مقاوم‌سازي ساختمانها از تئوري تا عمل

مقدمه:
زلزله بم موجبات تأثر و تأسف عمومي را نسبت به فجايعي كه براي مردم منطقه پيش آمده، فراهم آورد. ليكن زلزله مازندران با لرزش شديدي كه در تهران احساس شد علاوه ‌بر همدردي با مردم آن ديار، باعث نگراني و تشويش بيش از حد براي ساكنين پايتخت گرديد و همدلي با ديگران را با نگراني براي خود در هم آميخت.

مجدداً بحث مقاوم‌سازي، سخن روز همة مسؤولين و حتي مردم گرديد. عده‌اي مقاوم‌سازي را به عنوان «ساختن مقاوم ساختمان‌هاي نوساز» مطرح نمودند و عده‌‌اي ديگر بحث «مقاوم‌سازي ساختمان‌هاي قديمي» را مدنظر دارند. ولي نكته نگران كننده‌ اين است كه متأسفانه حتي بعد از وقوع زلزله‌هاي اخير، هنوز ساختمان‌هاي خصوصي، عمومي و آموزشي دولتي در تهران در حال احداث است كه در كمال تأسف عمداً يا سهواً، ضوابط محاسباتي و اجرائي مقاوم‌سازي زلزله در مورد آنها اجرا نمي‌شود و نظارت صحيحي هم بر آنها حاكم نمي‌باشد و معلوم نيست در كجاي اين هياهو و غوغاي مقاوم‌سازي، قرار دارند.

 

                   

ادامه نوشته

مسائل اجرائي بتن سبكدانه سازه اي

بسياري از اصول اجرائي حاكم بر بتن ريزيهاي معمولي در بتن ريزي با بتن سبــكدانه سازه اي كماكان از اهميت برخوردار است . مسلما" در بتن هاي غير سازه و سبكدانه بسياري از نكات مورد نظر نميتواند با اهميت تلقي شود و عدم رعايت برخي قواعد تا آنجا كه به وزن مخصوص بتن ريخته شده لطمه نزند و آنرا بالا نبرد با اهميت تلقـــي نميشـــود.
اصل پيوستگي و تدوام در بتن ريزي ( عدم ايجاد درز سرد ) ، اصل عدم گيرش يا نزديكي به گيرش در بتن قبل از ريختن و تراكم ، اصل عدم جدا شدگي مواد (نا همگني ) بتن ، اصل رعايت دماي مناسب بتن ريزي ، اصل عدم آلودگي بتن به مواد مضر ، اصل رعايت تراكم صحيح ، اصل رعايت پرداخت صحيح سطح بتن ، اصل انتخاب صحيح اسلامپ با توجه به وضعيت قطعه و وسايل تراكمي موجود ، اصل رعايت و بكارگيري نسبت ها و مقادير صحيح مصالح و پرهيز از مصرف مواد نا مناسب ، و در نهايت اصل عمل آوري صحيح و قالب برداري به موقع و با دقت همواره در اين نوع بتن ريزيها مانند بتن هاي معمولي از اهميت برخوردار مي باشد .

استفاده از مواد مناسب و نسبت هاي صحيح :
بكار گيري مواد و مصالح مناسب طبق مشخصات پروژه ، رعايت مصرف سيمان تازه و غير فاسد از نوع مورد نظر و مطابق با استاندارد مورد قبول كاملا" مهم مي باشد . توزين يا پيمانه كردن دقيق و صحيح مصالح مصرفي طبق طرح اختلاط ارائه شده از اهميت برخوردار است . بهتر است مصالح سنگي مصرفي به ويژه سبكدانه در شرايطي قرار گيرد كه نوسانات رطوبتي اندكي داشته باشد . براي مثال خوبست بدانيم ليكاهاي موجود در ايران ميتواند تا بيش از 30 درصد آب را در خود جذب و نگهداري كند . بنا براين بين سنگدانه كاملا" خشك و كاملا" اشباع تفاوت فاحشي وجود دارد و ميتواند بر اسلامپ حاصله و نسبت آب به سيمان و در نتيجه به مقاومت و دوام بتن سبكدانه سازه اي اثر چشمگيري باقي گذارد . بهر حال اگر بدانيم مثلا" سنگدانه هاي ما حدود 5 درصد رطوبت دارد ميتوانيم مقدار آب مصرفي را تنظيم نمائيم تا به طرح اختلاط مورد نظر دست يابيم .
بايد دانست مشكل بزرگ توليد بتن سبكدانه همين تغيير رطوبت است و لذا كنترل نسبت آب به سيمان در اين بتن ها مشكل مي باشد و حتي مانند بتن هاي معمولي نيز نميتوان با كنترل اسلامپ به نتيجه مورد نظر رسيد .

انتخاب اسلامپ صحيح :
مانند بتن هاي معمول انتخاب اسلامپ ميتواند مهم باشد . از نظر جدا شدگي ، آب انداختن ، رسيدن به تراكم مورد نظر با توجه به ابعاد قطعه ، طرز قرارگيري ، وضعيت درهمي ميلگردها ، وسايل تراكمي موجود قابل تأمين اين انتخاب كاملا" معنا دار و با اهميت است . به دليل سبكي سنگدانه ها بويژه سبكدانه هاي درشت احتمال جدا شدگي در بتن شل افزايش مي يابد . لذا اسلامپ هاي بيش از ده سانتي متر ابدا" مطلوب نيست مگر اينكه بتن پر عياري داشته باشيم ، همچنين با وجود موادي مانند ميكرو سيليس ممكنست اين جدا شدگي به حداقل برسد .
بنا براين اگر قرار باشد بتن سبكدانه پمپي با اسلامپ 10 تا 15 سانتي متر را داشته باشيم عيار سيمان بايد از حدود 400 كيلو در متر مكعب فراتر رود . در حاليكه اگر اسلامپ كمتر باشد حداقل عيار سيمان در ACI برابرkg/m3 335 مطرح شده است . در حالات عادي اسلامپ هاي 5 تا 8 سانتي متر براي بتن سبكدانه غير پمپي و اسلامپ 7 تا 10 سانتي متر براي بتن سبكدانه پمپي مطلوب تلقي ميشود بدون اينكه اين اعداد جنبه آئين نامه اي داشته باشد .
تغييرات اسلامپ در طول اجراء در بتن سبكدانه بسيار جدي است . در بتن هاي معمولي نيز اين پديده به چشم ميخورد بويژه وقتي سنگدانه هاي درشت خيلي خشك باشند ممكن است حتي در طول 15 دقيقه پس از ساخت شاهد افت جدي در اسلامپ باشيم . در بتن سبكدانه اين امر به شدت وجود دارد . فرض كنيد اگر در طول 15 تا 30 دقيقه جذب آب سبكدانه 5 تا 10 درصد فرض شود و فقط سبكدانه درشت به ميزان 300 كيلو داشته باشيم 15 تا 30 كيلو آب را جذب مي كند كه كاهش اسلامپ 6 تا 15 سانتي متر را ميتوان شاهد بود . اگر قرار باشد طول مدت حمل و ريختن و تراكم زياد باشد كاملا" دچار مشكل ميشويم . همچنين در بتن هاي پمپي ، اين كاهش و افت در اسلامپ مسئله ساز است . بنا براين سعي ميشود كه چنين پروژه هائي حتي الامكان از 24 ساعت قبل از ساخت بتن ، سبكدانه ها را خيس كرد (Presoaking ) تا آب قابل ملاحظه اي را جذب نمايد و پس از اختلاط بتن شاهد افت اسلامپ زيادي نباشيم . اين خيس كردن ممكن است حتي از سه روز قبل شروع شود ادامه يابد . خيس كردن سنگدانه ممكنست با آب پاشي تحت فشار و بصورت باراني باشد و يا از سيستم خلاء براي نفوذ سريعتر آب به داخل سبكدانه استفاده شود كه در ايران روش ساده اول معمولتر و عملي تر مي باشد . ريختن آب و سبكدانه در مخلوط كن و اضافه كردن سيمان و غيره پس از مدتي تأخير ميتواند به افت اسلامپ كمتر منجر شود .
ميزان جذب آب سبكدانه ها علاوه بر زمان تابع ميزان آب موجود در آن ( رطوبت اوليه ) نيز مي باشد كه پيش بيني جذب آب را در مدت معين دشوار مي كند مگراينكه قبلا" آزمايشهائي را با رطوبت اوليه موجود انجام داده باشيم .
اسلامپ هاي كمتر از 5 سانتي متري نيز كار تراكم را با مشكل مواجه مي سازد و فضاي خالي زيادي را در بتن بهمراه دارد .
بسياري از تحقيقات نشان داده اند مقاومت و دوام بتن هاي سبكدانه كه با سبكدانه خشك ساخته شده اند بهتر از وقتي است كه از سبكدانه قبلا" خيس شده يا اشباع شده استفاده گشته است .

اصل رعايت دماي مناسب :
حداقل و حداكثر دماي مجاز و مطلوب در أئين نامه ها مشخص شده است . رعايت اين امر براي بتن سبك سازه اي و با دوام بشدت ضروري است و از اين نظر تفاوتي با بتن معمولي وجود ندارد .
حداقل دماي مجاز 5+ درجه سانتي گراد و حداقل دماي مطلوب 10+ درجه سانتي گراد است . حداكثر دماي مجاز معمولا" 32-30 درجه سانتي گراد تا هنگام گيرش مي باشد و بهتر است از اين حد فاصله معقولي را داشته باشيم . در هواي سرد و گرم كه بتن با دماي مناسب توليد مي شود نبايد در حين اجرا آنقدر تأخير و معطلي بوجود آورد كه با تبادل گرمائي ، دماي مطلوب از دست برود .

اصل همگني ( عدم جداشدگي ) :
اصول جداشدگي و عوامل مؤثر بر آن براي بتن سبكدانه همچون بتن معمولي است ، اما براي بتن سبكدانه يك عامل ديگر يعني اختلاف در چگالي ذرات و خمير سيمان يا ملات ميتواند به جداشدگي منجر گردد . عوامل جداشدگي ميتوانند داخلي باشند كه صرفا" استعداد جداشدگي را بوجود مي آورند و يا عامل خارجي باشند كه مربوط به اجرا هستند و استعداد را شكوفا مي كنند . از عوامل داخلي بالا رفتن حداكثر اندازه سبكدانه مي باشد كه معمولا" باعث جداشدگي ميگردد و بهتر است حداكثر اندازه سبكدانه براي بتن سازه اي به 20 ميلي متر محدود شود و توصيه مي گردد تا از حداكثر اندازه 15 – 12ر ميلي متر استفاده شود . جالب است بدانيم معمولا" با افزايش حداكثر اندازه ، چگالي حجمي خشك ذرات سبكدانه درشت كاهش مي يابد و از اين نظر نيز امكان جداشدگي را قوت مي بخشد .
بالا رفتن اسلامپ به افزايش استعداد جداشدگي منجر مي شود . كاهش ميزان عيار سيمان و مواد سيماني و چسباننده ميتواند بشدت باعث افزايش استعداد جداشدگي گردد . اختلاف وزن مخصوص ( چگالي ) ذرات سبكدانه با خمير سيمان و يا اختلاف چگالي ذرات ريزدانه و درشت دانه به بالا رفتن استعداد جداشدگي منجر مي گردد . بالا رفتن نسبت آب به سيمان به افزايش پتانسيل جداشدگي مي انجامد . درشت تر شدن بافت دانه بندي سنگدانه ها معمولا" امكان جداشدگي را افزايش مي دهد . وجود مواد ريز دانه و چسباننده مانند پوزولان و ميكروسيليس و سرباره ها مي تواند باعث كاهش استعداد جداشدگي بتن سبكدانه گردد ، همچنين بكارگيري مواد حبابزا و ايجاد حباب هوا ميتواند جداشدگي و آب انداختن را كاهش دهد ضمن اينكه رواني و كارآئي مورد نظر تأمين ميگردد .
از عوامل خارجي مي توان حمل نامناسب ، ريختن غلط ، استفاده از شوت هاي طولاني و يا شيب نامطلوب ، برخورد بتن با قالب و ميلگردها ، ريختن بتن از ارتفاع زياد بدون لوله و قيف هادي و يا بدون پمپ معمولا" به جداشدگي منجر ميشود . بخاطر حساسيت جداشدگي در اين بتن ها بايد دقت بيشتري را اعمال نمود . بايد دانست نتيجه جداشدگي در بتن سبكدانه نيز از نظر مقاومتي و دوام بمراتب حادتر و مضرتر از بتن معمولي است .

اصل عدم آلودگي بتن به مواد مضر :
در طول حمل و ريختن و تراكم نبايد مواد مضر اعم از مواد ريزدانه رسي ( گل و لاي ) ، مواد شيميايي شامل چربي ها و مواد قندي يا انواع مختلف نمكها و آب شور و غيره با بتن مخلوط شود . مخلوط شدن موادي همچون گچ نيز توجيه ندارد . بهرحال در اين رابطه هيچ تفاوتي بين بتن معمولي و سبكدانه سازه اي وجود ندارد .

اصل عدم كاركردن با بتن در مرحله گيرش :
اگر عمليات بتن ريزي با بتني كه در مرحله گيرش است انجام گيرد مقاومت و دوام آن بشدت كاهش مي يابد و نفوذپذيري آن زياد ميشود . از اين نظر بتن مانند ملات گچ زنده است كه اگر آن را مرتبا" بهم بزنيم و ورز دهيم تبديل به ملات گچ كشته ميشود كه بشدت كم مقاومت و كم دوام است ، هرچند گيرش آن به تأخير مي افتد و يا اصلا" خود را نمي گيرد و صرفا" خشك مي شود . بهرحال نبايد بتن را در هنگامي كه در شرف گيرش است مخلوط نمود و يا ريخت و متراكم كرد . از اين نظر بين بتن سبكدانه و بتن معمولي اختلافي احساس نمي گردد .
مسلما" در هواي گرم و يا بتن با دماي زياد ، گيرش زودتر حاصل ميشود . زمان گيرش تابع نوع سيمان ( جنس و ريزي ) ، نسبت آب به سيمان و وجود مواد افزودني مي باشد . براي افزايش زمان گيرش و ايجاد مهلت براي عمليات اجرائي مي توان از بتن خنك ، كار در هنگام خنكي هوا يا شب ، سيمانهاي كندگير كننده استفاده نمود .

اصل پيوستگي و تداوم بتن ريزي ( عدم ايجاد درز سرد در بين لايه ها ) :
اگر در هنگام بتن ريزي به هر علت ، لايه زيرين قبل از ريختن و تراكم لايه روئي گيرش خود را انجام داده باشد درز سرد Cold Joint بوجود مي آيد . در اين رابطه فرقي بين بتن سبكدانه و معمولي وجود ندارد . بايد با تجهيز مناسب كارگاه ، افزايش توان توليد و حمل در ريختن و تراكم بتن ، افزايش زمان گيرش بتن و يا ايجاد درزهاي اجرائي مناسب و كاهش سطح بتن ريزي و يا كاهش ضخامت لايه ها امكان ايجاد درز سرد را به حداقل رساند .

تراكم صحيح بتن سبكدانه :
از آنجا كه بتن هاي سبكدانه بشدت در معرض جدا شدگي هستند ، تراكم با قدرت زياد و يا مدت بيش از حد مشكلات جدي را بوجود مي آورد . به محض اينكه احساس مي نمائيم كه شيره يا سنگدانه ها شروع به روزدن مي نمايند بايد تراكم را قطع كرد . لرزش ، بيش از فشار و ضربه ميتواند موجب جدا شدگي گردد.
به هر حال بايد كاملا" هواي بتن خارج و فضاي خالي به حداقل برسد تا مقاومت و دوام كافي ايجاد گردد.

پرداخت سطح بتن سبكدانه :
آب انداختن بتن همواره مشكل بزرگي در پرداخت نهائي سطح بتن مي باشد و اين امر اختصاص به بتن سبكدانه ندارد . خوشبختانه به دليل جذب آب تدريجـــي توسط سبكدانه ها ، آب انداختن ميتواند به كمترين مقدار برسد اما اگر سبكدانه ها قبل از اختلاط كاملا" اشباع شده باشد امكان آب انداختن بيشتر مي گردد . كم بودن عيار سيمان و مواد چسباننده سيماني ، فقدان مواد ريزدانه ، عدم وجود حباب هوا در بتن ، درشتي بافت دانه بندي ، افزايش حداكثر اندازه سبكدانه ، گردگوشه گي سنگدانه ها و بافت صاف سطح سنگدانه ، بالا بودن اسلامپ ، زيادي نسبت آب به سيمان و ... ميتواند موجب افزايش آب انداختن شود .
وقتي بتن آب مي اندازد بايد اجازه داد آب تبخير گردد و اگر تبخير به سرعت ميسر نمي گردد يا نگران گيرش هستيم بايد سعي كنيم آب روزده را با وسيله مناسبي ( گوني يا اسفنج ) از سطح پاك نمائيم و سپس سطح را با ماله چوبي و بدنبال آن با ماله فلزي يا لاستيكي صاف كنيم .
عدم رعايت اين نكات موجب افزايش نسبت آب به سيمان در سطح و كاهش مقاومت و دوام و افزايش نفوذپذيري بتن سطحي مي گردد .

عمل آوري بتن و سبكدانه :
هر چند عمل آوري رطوبتي و حرارتي بتن سبكدانه با بتن معمولي تفاوت چنداني ندارد اما اعتقاد بر اين است كه سبكدانه ها بعلت پوكي و تخلخل و جذب آب ميتوانند در صورت فقدان عمل آوري رطوبتي از ناحيه اجرا كنندگان ، بخشي از آب خود را در اختيار خمير سيمان قرار دهند و توقف شديدي در هيدراسيون سيمان رخ ندهد . اين امر را عمل آوري داخلي بتن سبكدانه مي گويند .

كنترل كيفي بتن سبكدانه :
كنترل كيفي بتن سبكدانه شامل بتن تازه و سخت شده است . كنترل رواني ، وزن مخصوص و هواي بتن از مهمترين كنترلهاي بتن تازه است . استفاده از آزمايش اسلامپ ، ميز آلمانی ( رواني ) و درجه تراكم براي اين بتن ها پيش بيني شده است . وزن مخصوص بتن تازه سبكدانه متراكم معمولا" كنترل مي شود و در آئين نامه هاي مختلف اختلاف 2 تا 3 درصد مجاز شمرده ميشود ( نسبت به طرح اختلاط ) . هواي بتن را براي بتن سبكدانه نميتوان بكمك روش فشاري بدست آورد و حتما" بايد از روش حجمي بهره گرفت . براي بتن سبكدانه سخت شده ، وزن مخصوص ، مقاومت فشاري ، كششي خمشي و نفوذپذيري ، جذب آب ، جذب موئينه و آزمايشهاي دوام در برابر خوردگي قابل كنترل است .
وزن مخصوص بتن سخت شده سبكدانه بصورت اشباع و خشك اندازه گيري ميشود و گاه بجاي خشك كردن از جمع زدن مقادير اجزاء در هر متر مكعب و افزودن مقداري رطوبت ثابت به آن ، وزن مخصوص بتن سخت شده را بدست مي آورند .
براي تعيين مقاومت فشاري و ساير پارامتر ها تفاوت چنداني بين بتن سبكدانه و معمولي وجود ندارد و شباهت جدي و كامل بين آنها وجود دارد . بهرحال ممكنست در مواردي نتايج حاصله در مقايسه با بتن هاي معمولي گمراه كننده باشد . مثلا" اگر جذب آب بتن سبكدانه را بصورت درصد وزني گزارش كنيم و آنرا با جذب آب بتن معمولي مقايسه نمائيم دچار اشتباه ميشويم و لذا توصيه ميشود جذب آب بتن بصورت درصد حجمي گزارش گردد .

بتن فاقد ريزدانه ( Concrete finez – No ) :
اگر سنگدانه هاي درشت تك اندازه را با سيمان و آب مخلوط كنيم و در قالب بدون تراكم بريزيم بتن فاقد ريزدانه و متخلخل بدست مي آيد كه از وزن مخصوص كمتري نسبت به بتن معمولي برخوردار خواهد بود . اگر چگالي سنگدانه ها در حدود معمولي باشد وزن مخصوص بتن فاقد ريزدانه حدود 1600 تا kg/m3 2000 بدست مي آيد اما اگر از سبكدانه درشت استفاده نمائيم ممكنست وزن مخصوص بتن حاصله از kg/m3 1000 كمتر شود ( حتي تا حدود kg/m3 650 ) . بهرحال در هر مورد بتن مورد نظر سبك يا نيمه سبك تلقي مي شود اما اگر سنگدانه معمولي استفاده شود نميتوان آنرا بتن سبكدانه دانست .
مسلما" اگر سنگدانه تك اندازه بكار نرود و حاوي ذرات ريز تا درشت باشد وزن مخصوص بتن حاصل نيز زياد خواهد شد . سنگدانه درشت مصرفي بايد 20-10 ميلي متر باشد و 5 درصد ذرات درشتر و 10 درصد ذرات ريزتر در اين نوع سنگدانه تك اندازه (Singl Size) مجاز است اما بهرحال نبايد ذرات ريزتر از 5 ميلي متر در آن مشاهده گردد . سنگدانه درشت بهتر است پولكي و كشيده و يا بسيار تيزگوشه نباشد . سنگدانه هاي گرد گوشه يا نيمه شكسته براي توليد اين بتن ارجح است .
ساختار بتن فاقد ريزدانه داراي تخلخل ظاهري است و حفرات موجود در بتن با چشم براحتي ديده مي شود كه در اين مجموعه خمير سيمان بايد صرفا" تا حد امكان سنگدانه ها را بهم چسباند و از پر كردن فضاها با خمير سيمان پرهيز شود زيرا وزن مخصوص بالا خواهد رفت . وجود خمير سيمان با ضخامت حدود 1 ميلي متر بر روي سنگدانه ها كاملا" مناسب است .
اگر سنگدانه معمولي بكار رود معمولا" مقدار شن اشباع تك اندازه بين 1400 تا 1750 كيلوگرم مي باشد . حجم اشغالي ذرات شن در حدود 550 تا 700 ليتر در هر متر مكعب است . وزن سيمان مصرفي بين 75 تا 150 كيلو در متر مكعب يا بيشتر است كه حجم آن حدود 25 تا 50 ليتر مي باشد . معمولا" نسبت آب به سيمان مصرفي 4/0 تا 5/0 مي باشد كه افزايش آن مي تواند به شلي خمير سيمان و رواني آن منجر شود كه موجب جداشدگي و پرشدن خلل و فرج مي گردد و بتن مورد نظر حاصل نمي شود . با كاهش نسبت آب به سيمان چسبندگي لازم بوجود نمي آيد و از نظر اجرائي دچار مشكل مي شويم . نسبت وزني سيمان به سنگدانه تا مي باشد . همانطور كه از محاسبات فوق بر مي آيد فضاي خالي اين بتن ( پوكي ) بين 25 تا 40 درصد مي باشد و ابعاد اين فضاها نيز بزرگ است درصد جذب آب بصورت وزني حدود 15 تا 25 درصد است . طبيعتا" با افزايش مقدار سيمان و آب و يا مصرف شن با دانه بندي پيوسته ( Graded Size ) وزن مخصوص بتن بيشتر خواهد شد . توصيه مي شود شن ها قبل از مصرف خيس و اشباع گردند .
طرح اختلاط اين بتن ها بصورت آزمون و خطا خواهد بود و بشدت تابع شرايط ساخت بتن مي باشد . بتن فاقد ريزدانه معمولا" بدون تراكم توليد مي شود و اگر مرتعش يا متراكم شود بسيار جزئي خواهد بود زيرا خمير سيمان ميل به پر كردن فضاي خالي بين سنگدانه ها را خواهد داشت و چسبندگي سنگدانه به يكديگر به حداقل خواهد رسيد .
معمولا" انجام آزمايش كارآئي يا اسلامپ براي اين نوع بتن موردي نخواهد داشت . از آنجاكه سنگدانه تك اندازه مصرف مي شود جداشدگي از نوع جدائي ريز و درشت سنگدانه معنائي ندارد و مي توان آن را از ارتفاع قابل ملاحظه ريخت .
بعلت محدوديت دامنه نسبت آب به سيمان و وجود فضاي خالي قابل توجه در اين نوع بتن ، مقاومت فشاري اين نوع بتن اغلب در حدود 5 تا 15 مگا پاسكال مي باشد و طبيعتا" يك بتن سبك سازه اي تلقي نمي گردد و بصورت مسلح مصرف نمي شود . برخي اوقات سعي مي كنند ميلگردها را با يك لايه ضد خوردگي ( پوشش مناسب ) آغشته كنند و سپس در بتن فاقد ريزدانه بكار برند . اگر از سبكدانه براي ساخت اين بتن استفاده شود ، مقاومت فشاري آن 2 تا 8 مگا پاسكال مي باشد .
جمع شدگي بتن هاي فاقد ريزدانه بمراتب كمتر از بتن معمولي است زيرا مقدار سنگدانه در مقايسه با خمير سيمان زياد است و يقه قابل توجه بوجود مي آورد . بتن فاقد ريزدانه سريعا" خشك مي شود زيرا خمير سيمان در مجاورت هواي موجود و فضاي خالي است و علي القاعده در ابتدا از جمع شدگي بيشتري نسبت به بتن معمولي برخوردار مي باشد و عمل آوري آن از اهميت برخوردار است . قابليت انتقال حرارتي آن بمراتب از بتن معمولي با سنگدانه مشابه كمتر است ( حدود تا ) كه با افزايش رطوبت و اشباع بودن اين بتن ، اين قابليت انتقال حرارت افزايش مي يابد .
مدول الاستيسيته اين بتن ها بين 5 تا Gpa20 است ( براي مقاومت هاي 2 تا 15مگا پاسكال ) . نسبت مقاومت خمشي به فشاري حدود 30 درصد است كه از نسبت مقاومت خمشي به فشاري بتن هاي معمولي بيشتر مي باشد . ضريب انبساط حرارتي اين نوع بتن در حدود تا بتن معمولي است . نفوذپذيري زياد از مزايا و شايد معايب اين نوع بتن است . اما نكته مهم آنست كه موئينگي در اين نوع بتن كم تا ناچيز مي باشد . اگر اشباع از آب نباشد در برابر يخبندان مقاوم است . بعنوان يك نفوذپذير زهكش و تثبيت شده و همچنين يك مسير درناژ و مقاوم بسيار مفيد است . بازي كردن لايه هاي قلوه سنگ و شن درشت و متوسط يا ريز بعنوان زهكش يا بلوکاژ و فيلتر از مشكلات اجرائي محسوب مي شود بويژه اگر بخواهد باربر باشد يكي از معدود راههاي حل مشكل ، استفاده از بتن فاقد ريزدانه است و در اين حالت مسئله سبكي زياد مهم نيست .
اين نوع بتن مانند بسياري از بتن هاي سبك مي تواند جاذب صوت باشد ( نه عايق صوت ) و براي اين منظور نبايد سطح اين بتن با اندودي پوشانده شود .
اندودكردن اين بتن بسيار خوب و ساده انجام مي شود . استفاده از اين بتن براي روسازي و پياده رو سازي اطراف درختان و يا پاركينگ ها بسيار مفيد است ( بدليل نفوذپذيري ) . در ديوارهاي باربر با طبقات كم مي توان از اين نوع بتن استفاده نمود . براي ايجاد نفوذپذيري بعنوان لايه اساس يا زير اساس ميتواند بطور مؤثر عمل نمايد . همچنين بعنوان يك لايه بتن مگر نفوذپذير مناسب است در زير دال كف يا شالوده منابع آب بتني نيز از اين بتن مي توان استفاده نمود .

طرح اختلاط بتن سبکدانه ( سازه ای و غير سازه ای )
در طرح اختلاط هر نوع بتن ابتدا بايد خواسته ها را بررسی و فهرست نمود که در مورد بتن سبک نيز اين خواسته ها عبارتند از : مقاومت فشاری در سن مورد نظر ، وزن مخصوص بتن تازه و خشک ، دوام بتن در شرايط محيطی يا سولفاتی ، اسلامپ و کارآئی بتن ، مقدار حباب هوای لازم با توجه به حداکثر اندازه وشرايط محيطی ، و احتمالا" موارد ديگری همچون مدول الاستيسيته يا خواص فيزيکی مکانيکی ديگر مثل قابليت انتقال حرارت و غيره ، در کنار اين موارد ممکنست محدوده دانه بندی مطلوب ( بويژه در روشهای اروپائی ) از جمله محدوديت ها و خواسته ها باشد .
- در کنار اين خواسته ها ، داده هائی نيز بر اساس اطلاعات موجود از سيمان ، سنگدانه و ... در دست است و يا بايد در آزمايشگاه بدست آيد از جمله اينها می توان به موارد زير اشاره نمود :
نوع سيمان ، حداقل و حداکثر مجاز مصرف سيمان ، حداکثر مجاز نسبت آب به سيمان ، نوع مواد افزودنی مورد نظر و مشخصات آن ، نوع سنگدانه درشت و ريزدانه ، شکل و بافت سطحی سنگدانه ها ، چگالی و جذب آب سبکدانه ها و سنگدانه های معمولی ، رژيم و روند جذب آب سبکدانه ، وزن مخصوص توده ای سنگدانه درشت متراکم با ميله ( در طرح امريکائی ) ، دانه بندی سنگدانه ها و حداکثر اندازه آنها ، ويژگيهای مکانيکی و دوام سنگدانه ها ، مدول ريزی سنگدانه ها و ريزدانه ها ( بويژه در روش امريکائی ) ، چگالی ذرات سيمان و افزودنيها : گاه لازمست دانه بندی يا مدول ريزی سبکدانه ها معادل سازی شود يعنی با توجه به اختلاف در چگالی ذرات ، دانه بندی وزنی به دانه بندی و مدول ريزی حجمی تبديل گردد که در اين حالت لازمست برای چگالی ذرات هر بخش اندازه ای را تعيين کنيم .

روش طرح اختلاط و جداول و اطلاعات ضروری در هر روش :
معمولا" در هر نوع روش طرح اختلاط لازمست حدود مقدار آب آزاد با توجه به کارآئی ، حداکثر اندازه سنگدانه و شکل آن فرض گردد و بدست آيد . نسبت آب به سيمان از جداول راهنما يا تجربيات گذشته و شخصی فرض می گردد . پس مقدار سيمان در اين صورت مشخص می گردد . هر چند گاه در طرح اختلاط بتن سبک ابتدا عيار سيمان فرض شده و با در نظر گرفتن نسبت آب به سيمان يا کارآئی ، مقدار آب مشخص می شود .
اختلاف عمده روش ها در تعيين مقدار سنگدانه ها خواهد بود و بويژه در طرح مخلوط بتن سبکدانه يا نيمه سبکدانه ، اختلافات موجود روشها برای بتن معمولی ، بيشتر می گردد .
در روشهای اروپائی ( آلمانی و اتحاديه بتن اروپا ) با توجه به محدوده مطلوب دانه بندی حجمی، سهم سنگدانه های ريز و درشت ( خواه هر دو سبکدانه يا يکی از آنها سبکدانه باشد ) بدست می آيد، سپس چگالی متوسط سنگدانه ها تعيين شده و در فرمول حجم مطلق قرار می گيرد و مقدار کل سنگدانه بدست می آيد .
اگر افزودنی داشته باشيم حجم افزودنی از تقسيم وزن به چگالی آن بدست می آيد و در رابطه قرار داده می شود .
پس از تعيين با توجه به سهم هر سنگدانه ، وزن آن مشخص می گردد و با توجه به ظرفيت جذب آب هر نوع سنگدانه می توان وزن خشک هر کدام و آب کل را تعيين کرد . وزن مخصوص بتن تازه نيز از جمع اوزان اجزاء بتن بدست می آيد ( بصورت محاسباتی ) در عمل پس از ساخت مخلوط آزمون با توجه به نتيجه محاسبات و اطلاعات حاصله مانند اسلامپ ، کارآئی و مقاومت و وزن مخصوص بتن ميتوان اصلاحات لازم را در محاسبات به انجام رسانيد و طرح اختلاط را نهائی کرد. امريکائی ها نيز در ACI 211.1 و ACI 211.2 و ACI 213 R سه روش را برای طرح اختلاط بتن سشبکدانه و يا نيمه سبکدانه توصيه نموده اند :

1. روش حجم مطلق : در اين روش عملا" پس از تعيين آب آزاد ، سيمان ، سنگدانه درشت خشک و اشباع ، ازفرمول حجم مطلق استفاده نموده و وزن ماسه اشباع با سطح خشک بدست می آيد . اين روش برای بتن معمولی ، نيمه سبکدانه و تمام سبکدانه قابل اجراست . مشکل عمده در اين حالت تعيين مقدار چگالی اشباع با سطح خشک سبکدانه ها و ظرفيت جذب آب آنهاست . علاوه بر آن عملا" يک اشکال مفهومی نيز در اين حالت وجود دارد و آن اينکه آيا اصولا" در هنگام ريختن و گيرش بتن ، سبکدانه ها به مرحله اشباع با سطح خشک رسيده اند که بتوان از چگالی اشباع با سطح خشک آنها برای تعيين حجم اشغال آنها در بتن استفاده نمود . از آنجا که تفاوت حالت واقعی با فرضی گاه خيلی زياد است . استفاده از اين روش بويژه اگر قرار باشد وزن اشباع با سطح خشک و چگال مربوط در فرمول حجم مطلق بکار رود محل تأمل است مگر اينکه از يک چگالی يا وزن ديگر با توجه به جذب آب واقعی در اين حالت استفاده نمود که روش بسيار دقيقی حاصل می گردد . امروزه سعی شده است با اين روش به طرح اختلاط مناسب دست يافت . مثلا" در روش های اروپائی که اين مشکل وجود دارد سعی می شود از جذب آب و چگالی نيم ساعته ، 1 ساعته يا 2 ساعته و حتی 4 ساعته استفاده گردد.
آنچه در اينجا اهميت دارد آنست که در هنگام گيرش نسبت آب به سيمان واقعی چقدر است و با دانستن اينکه آبهای موجود در بتن ، در سنگدانه يا خمير سيمان است به اين نتيجه رسيد که آب آزاد واقعی چيست و چقدر می باشد . مسلما" کارآئی و اسلامپ را آب آزاد مربوط به زمانهای کوتاهتر مثل 15 دقيقه يا 30 دقيقه تعيين می کنند . اين امر مستلزم آنست که رژيم جذب آب سبکدانه را بدانيم و در هر حالت چگالی سبکدانه را محاسبه کنيم .

2. روش حجمی ( Volumetric ) : در روش حجمی از يک مخلوط آزمون با مقادير تخمينی استفاده می شود ( آب ، سيمان ، سنگدانه ريز و درشت ) . پس از ساخت مخلوط آزمون و انجام آزمايشهای لازم مانند : اسلامپ ، درصد هوا و وزن مخصوص بتن تازه و مشاهده قابليت تراکم ، ماله خوری و کارآئی ، خصوصيات ديگر نيز می تواند در زمانهای بعد بدست آيد ( مثل مقاومت و ..... ) . اما پس از ساخت بتن و اندازه گيری وزن مخصوص بتن تازه ، با توجه به وزن مصالح مورد استفاده در ساخت بتن ، حجم بتن حاصله تعيين می شود . حجم محاسباتی بتن نيز قبلا" مشخص شده است و لذا و اصلاح در مخلوط برای يکی شدن اين ها صورت می گيرد . مسلما" بايد اهداف مقاومتی و دوام نيز تأمين گردد . در اينجا نيز مشکل چگالی ذرات و جذب آب وجود دارد که معمولا" رطوبت و چگالی موجود مد نظر قرار می گيرد . لازم به ذکر است که اين روش برای بتن های نيمه سبکدانه و تمام سبکدانه کاربرد دارد. همچنين در اين روش از حجم سنگدانه ها بصورت شل استفاده می گردد .

3. روش وزنی يا فاکتور چگالی ( Weight Method or Specificgravity factor Method ) :

اين روش صرفا" برای سبکدانه درشت و ريز دانه معمولی کاربرد دارد يعنی صرفا" برای بتن نيمه سبکدانه مورد استفاده قرار می گيرد . در اين روش از فاکتور چگالی بجاب چگالی ذرات سبکدانه استفاده می شود . فاکتور چگالی تعريف خاصی است که فقط در ACI 211.2 ( در ضميمه A ) آمده است و با تعريف چگالی تفاوت دارد . S فاکتور چگالی بصورت زير می باشد. C وزن سبکدانه ( خشک يا مرطوب ) و B وزن پيکنومتر پر از آب و A وزن پيکنومتر پر از آب و سبکدانه می باشد.
بنابراين در اين تعريف وضعيت رطوبتی مشخص نيست و ميتواند از حالت خشک تا کاملا" اشباع انجام شود اما بايد وضعيت رطوبتی در هر مورد گزارش شود يعنی بگوئيم فاکتور چگالی برای سبکدانه ای با رطوبت معين برابر S می باشد . با توجه به روند معمولی طرح اختلاط امريکائی ، مقدار آب آزاد ، نسبت آب به سيمان ، مقدار سيمان ، وزن سبکدانه درشت خشک و مرطوب بدست می آيد که در اين رابطه مدول زيری ماسه و حداکثر اندازه سنگدانه ها و کارآئی مورد نياز کاربرد دارد . جذب آب سبکدانه می تواند طبق دستورهای استاندارد موجود و يا ضميمه B مربوط به ACI 211.2 مشخص شود که بر اين اساس آب کل بدست می آيد . در اين روش نيز باتوجه به وزن يک متر مکعب بتن مقدار ماسه بدست می آيد و بتن مورد نظر با اصلاحات رطوبتی ساخته شده و حک و اصلاح لازم بر روی مقادير بدست آمده صورت می گيرد تا بتن مطلوب حاصل شود .

کاربردهای بتن سبک همانطور که می دانيم بتن سبک می تواند به صورت های مختلفی طبقه بندی شود ، مثلا" سازه ای و غير سازه ای . از اين نوع طبقه بندی می توان کاربردها را حدس زد . اما گاه از طبقه بندی ديگری استفاده می نمائيم مثل بتن سبکدانه ، بتن اسفنجی و بتن فاقد ريز دانه . در اين نوع طبقه بندی ظاهرا" نمی توان کاربردها را حدس زد .
• ساخت قطعاتی است که صرفا" جنبه پر کننده دارند . در نوع سازه ای نيز دو نوع بتن داريم : مسلح و غير مسلح . مثلا" اجزاء سازه ای غير مسلح مثل بلوکهای ساختمانی را بايد از اين جمله موارد دانست . بتن سبکدانه ای سازه ای مسلح کاربردهائی شبيه بتن معمولی مسلح دارد و حتی ممکن است پيش تنيده هم باشد . جالب است بدانيم بتن های سبکدانه سازه ای مسلح در ابتدا عمدتا" در ساخت کشتی های تجاری و جنگی در جنگ جهانی اول از سال 1918 تا 1922 بکار رفته است . کشتی Atlantus به وزن 3000 تن در سال 1918 و کشتی Selmaبه وزن 7500 تن و طول 132متر در سال 1919 به آب افتادند . همچنين در جنگ جهانی دوم ( تا اواسط جنگ) بدليل محدوديت هائی در توليد ورق فولادی ( مانند جنگ جهانی اول ) کشتی ها و بارج های زيادی ساخته شدند که در همه آنها از بتن سبکدانه ( و معمولا" سبکدانه رسی منبسط شده ) استفاده شده بود . 24 کشتی اقيانوس پيما و 80 بارج دريائی تا پايان جنگ جهانی دوم در امريکا ساخته شد که ظرفيت آنها از 3 تا 000/ 140 تن بود .
جالب است بدانيم تا اين اواخر يک کشتی بنام Peralta که در جنگ جهانی اول ساخته شده بود ، شناور بود و آزمايشهای ارزشمندی نيز بر روی آن انجام شده است که نشان دوام عالی بتن آن از نظر خوردگی ميلگردها و کربناسيون می باشد .
مخازن شناور آب و مواد نفتی از جمله موارد استفاده بتن سبکدانه ای مسلح در طول دوران جنگ جهانی اول و دوم بوده است که ظاهرا" بعدها نيز بر خلاف ساخت کشتی ها ، توليد و ساخت آنها ادامه يافته است اما بدليل اقتصادی در زمان صلح بواسطه وفور ورق فولادی ، توليد کشتی مقرون به صرفه نمی باشد .
در سالهای 1950 و 1960 پل ها و ساختمانهای زيادی با بتن سبکدانه مسلح سازه ای در دنيا ساخته شد . بطور مثال در ايالات متحده و کانادا بيش از 150 پل و ساختمان از اين نوع مورد بهره برداری قرار گرفت . بطور مثال ساختمان هتل پارک پلازا در سنت لوئيز امريکا ، ساختمان 14 طبقه اداره تلفن بل جنوب غربی در کانزاس سيتی در سال 1929 از ساختمانهائی هستند که در دهه 20 و 30 ميلادی ساخته شده اند .
ساختمان 42 طبقه در شيکاگو ، ترمينال TWA در فرودگاه نيويورک ( 1960 ) ، فرودگاه Dulles واشنگتن در 1962 ، کليسائی در نروژ در 1965 ، پلی در وايسبادن آلمان در 1966 و پل آب بر در روتردام هلند در 1968 از جمله اين موارد هستند . در هلند ، انگلستان ، ايتاليا و اسکاتلند در دهه 70 و 80 ميلادی پلهائی از نوع ساخته شده اند .
مخازن عظيم گاز طبيعی ، اسکله شناور ، مخزن نفت در زير آب و ساختمانهای فرا ساحلی مانند سکوهای استخراج نفت و گاز با بتن سبکدانه مسلح سازه ای ساخته شده اند که اغلب بصورت نيمه سبکدانه و گاه تمام سبکدانه بوده اند . سکوی بزرگ پرش اسکی ، جايگاه تماشاچی در برخی استاديومها و همچنين سقف اين استاديومها گاه از بتن سبکدانه ساخته شده است .
بزرگترين بنای بتن سبکدانه ، يک ساختمان اداری 52 طبقه در تکزاس با ارتفاع 215 متر می باشد. در هلند در سالهای 60 تا 73 ميلادی 15 پل با دهانه بزرگ با بتن سبکدانه ساخته شده است. در سالهای دهه 70 ميلادی ساخت بتن های سبکدانه پر مقاومت آغاز شد و در دهه 80 بدليل نياز برخی شرکتهای نفتی در امريکا ، نروژ و مکزيک ، ساخت سازه ها و مخازن ساحلی و فرا ساحلی مانند سکوهای نفتی با بتن سبکدانه پر مقاومت آغاز شد که در اواخر دهه 80 و اوائل دهه 90 به بهره برداری رسيد و نتايج آن منتشر شده است .
FIP ( fib ) برخی پروژه های مهم ساخته شده با بتن سبکدانه را منتشر نموده است که کاربرد آن را نجومی نشان می دهد .

• بتن اسفنجی معمولا" بع دو نوع گازی و کفی تقسيم ميشود . اين نوع بتن ها را بتن پوک و متخلخل نيز می نامند و در برخی منابع بتن Cellular نام دارد . اغلب بتن های گازی و کفی غير سازه ای هستند اما برخی بتن های گازی از قابليت سازه ای شدن و حتی مسلح شدن برخوردار می باشند .
بتن های اسفنجی عمدتا" پر کننده هستند . ساخت برخی پانل های جداکننده ، ايجاد کف سازی و شيب بندی ، عايق های حرارتی و جاذب صوت از جمله موارد مورد استفاده بتن اسفنج غير سازه ای است . توليد قطعات و بلوکهای ساختمانی برای بنائی از جمله کاربردهای بتن گازی است . نوعی بتن گازی بنام سيپورکس در سوئد ساخته شد که می توانست مسلح گردد و در ايران نيز مدتی قطعات بتنی مسلح سيپورکسی بکار رفت از جمله دالهای بتن مسلح پيش ساخته برای پوشش سقف از جنس سيپورکس در برخی پروژه های کشور ما مصرف گشته است . قطعات نما از جنس بتن کفی و گازی يا سبکدانه غير سازه ای نيز توليد و مصرف شده است .
کاربردهای بتن فاقد ريزدانه نيز در مبحث جداگانه ای نيز ارائه شده است .

  • برگرفته از سايت انجمن بتن ايران

 

تاور کرین چگونه کار می کند؟ (ماشن آلات ساختمانی )

۱-معرفی چگونگی کار تاور کرین :
تاور کرین(جرثقیل برج) یک وسیله ثابت معمول در محل ساخت ساختمان های بزرگ است . آنها وسایلی قوی و زیبا یی ناشناخته هستند . آنها اغلب تا ۱۰۰ feet در آسمانها قد بر افراشته اند و از دور می توانند غیر قابل دسترسی باشند . کارگران ساختمانی از تاور کرین برای جابجایی آهن آلات ساختمانی . بتون . ابزارهای بزرگ شبیه ژنراتورها و قطعات مختلف وسیعی در دیگر مصالح ساختمانی استفاده می کنند.

تاور کرین می توواند تا ۱۵۰ feet به آسمان بلند شود و تا ۱۹ تن را بلند کند


۲-قسمت هایی از یک تاور کرین


     تمام تاور کرین ها شامل قسمت های پایه ای شبیه هم هستند.


 *** پایه آن یک صفحه بتنی بزرگ است که جرثقیل را پشتیبانی می کند.


*** ارتباط پایه ای دکل همان است که به جرثقیل اجازه می دهد تا ارتفاع بگیرد.

*** بالای این دکل یک واحد چرخشی ضمیمه می شود ( چرخ دنده و موتور) که اجازه چرخش را به جرثقیل می دهد .



بالای واحد چرخشی سه قسمت وجود دارد :

*** شاخه بزرگ افقی ( یا بازوی کاری) : قسمتی از جرثقیل است که بار و فشار را جابجا و تحمل می کند .

***بازوی افقی کوچکتر : قسمتی است که شامل موتور جرثقیل و قسمت های الکترونیکی به اضافه وزنه های تعادلی بتنی می شود.


اتاقک کنترل کننده :

 بازوی مکانیکی ماشین شامل موتوری است که بار و فشار را جابجا می کند و راننده به وسیله کنترل الکترونیکی جرثقیل را کنترل می کند و کابلی استوانه ای شکل که در زیر نشان داده شده است.

موتور جرثقیل :

۳-جرثقیل چه مقدار وزنی را می تواند جابجا کند؟

 یک جرثقیل برجی نمونه مشخصه های ذیل را دارد :

*** بیشترین حد ارتفاع آزاد : ۲۶۵ پا یا ۸۰ متر
   جرثقیل ارتفاع جمعی خیلی بیشتر از ۲۶۵ پا دارد اگر آن به ساختمان بسته شده باشد بطوریکه ساختمان اطراف جرثقیل بالا بیاید.

***بیشترین حد دسترسی :۲۳۰ پا یا ۷۰ متر

*** بیشترین حد نیروی بلند کردن و جابجایی : ۱۹.۸ تن

 ***وزنه های تعادلی : ۲۰ تن

 

civilica.ir

مدیریت بحران و نقش فضاهای باز در کاهش خطرات ناشی از زلزله

ما به مرگ انسانها به هنگام بروز زمين لرزه بيش از حد عادت کرده يم ، حال بيد بياموزيم که چگونه آنان را به هنگام زلزله ، زنده نگاه داريم .
شيد بندرت بتوان هنري يافت که به اندازه معماري با زندگي مردم پيوند داشته باشد ، هنر معماري از بارزترين جلوه هي فرهنگ هر قوم و هر دوره تاريخي و نميشگر فضي زيست آدمي است و در مقوله گفتگوي تمدنها بهترين و کارآمد ترين تکنيک جهت انتقال فرهنگ غني خودي مي باشد .
مقاله حاضر گامي است در جهت طراحي بهينه شهري و بحداقل رساندن کاهش آسيب پذيري ناشي از زلزله و طريقه استفاده از فضا هي باز در موقعيت بحران ، اميد آنکه سير پژوهشگران و متخصصان ما را ياري نميند.
اصولا برخورد ما با مساله زلزله بيد بکلي تغيير کند . ينکه وقتي حادثه ي رخ داد سازمانها و نهاد هي گوناگون بسيج شوند ، امداد هي لازم را برسانند و بعد هم بروند دنبال کارشان درست نيست . ين رويه بيد تغيير کند . به زلزله يا پديده هيي مانند آن نبيد با ين ديد نگاه کرد .
پديده هيي مثل سيل ، خشکسالي ، هجوم آفات طبيعي و ... پديده هي مستمر و دائمي کشور ما هستند و نه حوادث نادر .
در طول تاريخ هميشه در يران زلزله بوده است ، سيل هميشه بوده است ، بدليل شکل خاص فلات يران ، خشکسالي بصورت ادواري هميشه بوده است و ... ينها پديده هي دائمي جامعه ما بوده و هست .
ين پديده ها هر بار که رخ مي داده اند نظام توليدي و اجتماعي را نابود مي کردند ، گسست يجاد مي کردند ، و تمدن و پيشرفت را به عقب مي انداختند . هر ده – دوازده سال يکبار در يران يک زلزله مهم اتفاق مي افتد .
بر همين منوال زلزله جنوب در سال 1332 ، زلزله بوئين زهرا در سال 1340 ، زلزله کاخک و فردوس در سال 1347 ، زلزله طبس در سال 1357 و زلزله گيلان و زنجان در سال 1369 و ...
پس مي توان از نظر جامعه شناسي ، جامعه يراني را جامعه ي بر آمده در دل فاجعه هي طبيعي ناميد يعني جامعه ي که زندگي اجتماعي آن در طول تاريخ دراز مدتش در دل فاجعه هي طبيعي شکل گرفته است .
با چنين دريافتي ، زلزله و ديگر بليي طبيعي را بيد امري مستمر ديد و بيد برنامه ريزي خاصي داشت .
زلزله يک پديده طبيعي است که وقوع آن اجتناب ناپذير است اما جلوگيري از خطرات احتمالي آن امکان پذير مي باشد ، مشروط بر ينکه بدانيم در کجا زندگي مي کنيم و آنچه را که مي سازيم ، چگونه مي سازيم . زمين زير پي ما کره گداخته ي است که تابع فعل انفعالات دروني خود مي لرزد ، فوران مي کند و فاجعه ببار مي آورد.
امروز بيش از دو ميليارد انسان در مناطق زلزله خيز و در مساکني زندگي مي کنند که در طرح و ساخت بني مسکونيشان هيچگونه مقاومت و پيداري در برابر حوادث ناگوار و غير مترقبه طبيعي بخصوص زلزله پيش بيني نشده است . ين افراد مجبورند همچنان و بدليلي از همين بنا هي قديمي و ابتديي استفاده نميند و بي شک اولين قربانيان ين قبيل حوادث نيز از همين افراد مي باشند.
نخستين گام در مصون نگاهداشتن شهر ها و منازل مسکوني ين دو ميليارد انسان و تضمين آسيش و آرامش در زندگيشان در برابر فاجعه زلزله اتخاذ تدابير و بهره جويي از تمامي دانسته ها و دانش هي ذيربط در ين خصوص است، بويژه کسب اطلاعات کافي از سطح زمين ، درون آن و بررسي تمامي عوامل فيزيکي خاک ، آب و موقعيت جغرافييي و جوي منطقه ي که در آن عناصر شهري و کانونهي زيستي را بر پا مي داريم .
در چنين موقعيتي مطالعات و تحقيقات وسيعي لازم است تا در هنگام بروز چنين اتفاقاتي بتوانيم آسيب پذيري ناشي از زلزله را کاهش دهيم . بدين خاطر ، مديريتي صحيح با اهدافي از قبل تعيين شده لازم است تا بتواند بدون تداخل امور با هم در راس کار هماهنگ کننده باشد .
ادامه نوشته

تاریخچه تونل سازی و سازه های زیر زمینی

احتمالا اولین تونل‌ها در عصر حجر برای توسعه خانه‌ها با انجام حفریات توسط ساکنان شروع شد . این امرنشانگر این است که آنها در تلاشهایشان جهت ایجاد حفریات به دنبال راهی برای بهبود شرایط زندگی خود بوده اند. پیش ازتمدن روم باستان ، در مصر ، یونان ، هند و خاور دور و ایتالیای شمالی ، تماما تکنیکهای تونلسازی دستی مورد استفاده قرار می‌گرفت که در اغلب آنها نیز از فرایندهای مرتبط با آتش برای حفر تونل های نظامی ، انتقال آب و مقبره‌ها کمک گرفته شده است. در ایران نیز از چند هزار سال پیش، به منظور استفاده از آبهای زیر زمینی تونل هایی موسوم به قنات حفر شده است که طول بعضی از آنها به 70 کیلومتر و یا بیشتر نیز می‌رسد. تعداد قنات های ایران بالغ بر50000 رشته برآورده شده است. جالب توجه است که این قنات های متعدد، طویل و عمیق با وسایل بسیار ابتدایی حفر شده اند.رومی ها نیز در ساخت قنات‌ها و همچنین در حفاری تونل های راه پرکار بودند. آنها در ضمن اولین دوربینهای مهندسی اولیه را در جهت کنترل تراز وحفاری تونل ها به کار بردند.اهمیت احداث تونل ها دردوران های قدیم ، تا بدین جاست که کارشناسان کارهای احداث تونل درآن تمدن‌ها را نشانگر رشد فرهنگ و به ویژه رشد تکنیکی و توان اقتصادی آن جامعه دانسته‌اند. تمدنهای اولیه به سرعت ، به اهمیت تونل‌ها ، به عنوان راه‌های دسترسی به کانی ها و مواد طبیعی نظیر سنگ چخماق به واسطه اهمیتش برای زندگی، پی‌بردند. همچنین کاربرد آنها دامنه گسترده‌ای از طاق زدن بر روی قبرها تا انتقال آب و یا گذرگاههایی جهت رفت و آمد را شامل می شد. کاربردهای نظامی تونل‌ها ، به ویژه از جهت بالابردن توان گریز یا راههایی جهت یورش به قرارگاهها و قلعه های دشمن ، ازدیگر جنبه های مهم کاربرد تونلها در تمدن های اولیه بود.
تونل سازی همزمان با انقلاب صنعتی، به ویژه به منظور حمل و نقل ، تحرک قابل ملاحظه ای یافت. تونلسازی به گسترش و پیشرفت کانال سازی کمک کرد و این امر در توسعه صنعت به ویژه در قرون 18 و 19 میلادی در انگلستان سهم بسزایی داشت. کانال‌ها یکی از پایه های انقلاب صنعتی بودند وتوانستند در مقیاس بسیار بزرگ هزینه‌های حمل و نقل را کاهش دهند. تونل مال پاس با طول 157 متر برروی کانال دومیدی در جنوب فرانسه اولین تونلی بود که در دوره‌های مدرن در سال 1681 ساخته شد. همچنین اولین تونل ساخته شده با کاربرد حفاری و انفجار باروت بود. در انگلستان، قرن 18 نیز جیمز بریندلی از خانواده ای مزرعه دار با نظارت بر طراحی و ساخت بیش از 580 کیلومتر کانال و تعدادی تونل به عنوان پدر کانال و تونل های کانالی ملقب شد. وی در سال 1759 با ساخت یک کانال به طول 16 کیلومتر مجموعه معدن زغال دوک بریدجواتر را به شهر منچستر متصل نمود. اثر اقتصادی تکمیل این کانال نصف شدن قیمت زغال در شهر و ایجاد یک انحصار واقعی برای معدن مذکور بود.
در اوایل قرن نوزدهم به منظور عبور از قسمتهای پایین دست رودخانه تایمز هیچ سازه ای موجود نبود و 3700 عابر مجبور بودند با طی یک راه انحرافی 3 کیلو متری با قایق مسیر روترهایت به ویپنیگ را طی کنند. اقدام به ساخت یک تونل نیز به دلیل ریزشی بودن ومناسب نبودن رسوبات کف رودخانه متوقف شد. تا اینکه در حدود سال 1820 فردی بنام مارک ایرامبارد برونل از فرانسه ایده استفاده از سپر را مطرح نمود و در سال 1825 کار احداث تونل بین روترهایت و ویپنیگ را آغاز و علی رغم جاری شدن چند نوبت سیل در سال 1843 آن را باز گشایی نمود. این تونل تامس نام گرفته و اولین تونل زیر آبی بود که بدون هر گونه رودخانه انحرافی حفر شد.
در دیگر موارد تونلهای زهکشی بزرگ ، نظیر تونلی با طول 7 کیلو متر در هیل کارن انگلستان ، اهمیت زیادی در توسعه صنعت معدنکاری داشته‌اند. البته بررسی تاریخچه پیشرفت در روش ها و تکنیک ها و به عبارتی در هنر تونل سازی نشانگر این مطلب است که مانند بسیاری دیگر از علوم و فنون بیشتر رشد این هنردر قرن گذشته صورت گرفته و تا حال نیز ادامه دارد.
ویژگی های فضاهای زیرزمینی و نمونه های بارز آنهاهم اکنون در زمینه های مختلف کاربرد تونل‌ها ، مزایای متفاوت و گوناگونی را بر می شمرند. از آن جمله ویلت، استفاده فزاینده فعلی از فضاهای زیر زمینی را به دلایل زیر رو به افزایش دانسته است.
1- تفوق محیط ساختاری به معنای وجود یک حصار وساختار طبیعی فراگیر.
2- عایق سازی با سنگهای فراگیر که دارای ویژگیهای عالی عایق‌ها می باشند.
3- محدودیت کمتر دراحداث سازه های بزرگ به دلیل نیاز کمتر به استفاده از وسایل نگهداری عمده در مقایسه با احداث همان سازه بر روی سطح زمین.
4-  کمتر بودن تأثیرات منفی زیست محیطی.
از دیگر مزایای تونل ها در راههای ارتباطی می توان به :
1-  کوتاهتر شدن مسیرها و افزایش راند مان ترافیکی
2- بهبود مشخصات هندسی مسیر
3- جلوگیری از خطرات ریزش کوه و بهمن
4- ایمنی بیشتر در برابر زلزله، اشاره کرد .
مثال های متعددی می توان از نقش وتأثیر عمده تونلسازی و پروژه های بزرگ این صنعت از گذشته تا حال ذکر کرد . تونل مشهور مونت بلان دو کشور فرانسه و ایتالیا را به هم متصل می سازد. عملیات ساختمانی آن در سال 1959 آغاز گردید و حفر این تونل فاصله بین میلان و پاریس را به طول 304 کیلو متر کوتاهتر نموده است. از دیگر نمونه ها کشور فنلاند است که سازه های زیر زمینی را به صورت غارهای عظیم بدون پوشش بتنی ، به منظور انبار مواد نفتی مورد استفاده قرار داده و در حال حاضر بیش از 75 انبار نفتی در سراسر کشور فنلاند با گنجا یشی بیش از 10 میلیون متر مکعب ساخته شده.
پایگاه اطلاع رسانی انبوه سازان ایران         http://www.anboohsazan.net

بارگذاری

بارهایی که روی ساختمان وارد می شوند یا مستقیمآ به وسیله طبیعت و یا به وسیله انسان ایجاد می گردند. به عبارت دیگر برای بار روی ساختمانها دو منبع اصلی وجود دارد، یکی ژئوفیزیکی و دیگری مصنوعی.

نیروهای ژئوفیزیکی را که نتیجه تغییرات مداوم در طبیعت هستند ممکن است به نیروهای جاذبه زمین، وزن ساختمان خودش ایجاد نیروهایی در سازه می کند که موسوم به بار مرده است واین بار در تمام طول عمر ساختمان ثابت باقی می ماند.

اشکال همیشه در حال تغییر ساختمان نیز تایع اثرات جاذبه زمین است که ایجاد تغییراتی در بارها در طول زمان می کند.بارهای ناشی از تغییرات جوی با زمان و مکان تغییر می کنند و به شکل باد، حرارت، رطوبت، باران، برف، و یخ ظاهر می شوند. نیروهای زلزله از حرکت نا منظم زمین یعنی زمین لرزه ایجاد مشوند.

منابع بارگذاری مصنوعی ممکن است تکان ناشی از حرکت اتومبیل ها، آسانسورها، ماشینهای مکانیکی و غیره و یا ممکن است تغییر مکان افراد، وسایل و یا نتیجه ضربه و انفجار باشند. به علاوه ممکن است نیروهایی در زمان تولید و اجرا در سازه به وجود آبد. پایداری ساختمان ممکن است ایجاب پیش تنیدگی کند که باعث ایجاد نیرو در ساختمان می شود.

منابع بارهای ژئوفیزیکی و مصنوعی در ساختمان غالبآ به یکدیگر بستگی دارند. جرم، اندازه، شکل و مصالح یک ساختمان در روی نیروهای ژئوفیزیکی اثر می گذارند. برای مثال اگر عناصر ساختمان در مقابل تغییرات درجه حرارت و رطوبت نتوانند به آزادی واکنش نشان دهند و گیردار باشند نیروهایی در ساختمان ایجاد می شود.

برای اینکه اطمینان حاصل شود که مشکلات آتی از بین رفته و بازده سازه ای حاصل شده باشد لازم است که مطالعات دقیق جواب تئوری ساختمان به اثرها انجام گیرد. طراح باید نیروها و اثر بارگذاری مربوطه را درک کند تا ساختمان بی خطر و قابل استفاده باشد.

:: بار مرده ساختمان

بارهای ناشی از نیروی جاذبه زمین را متوان به دو دسته مجزا تقسیم کرد:

اساتیکی و دینامیکی: بارهای استاتیکی همیشه جزء ثابتی از سازه هستند. بارهای دینامیکی موقتی هستند یعنی با تغییر زمان و فصل تغییر می کنند، یا تابع مکان داخل یا روی سازه هستند.

بارهای مرده را ممکن است به صورت بارهای استاتیکی که در اثر وزن اجزاء سازه ایجاد می شوند تعریف کرد.نیروهایی که منجر به بار مرده می شوند عبارتند از: قسمتهای باربر ساختمان،کف،روکاری سقف،دیوارهای جدا کننده ثابت،پوشش نما،مخزنهای انباری،سیستمهای توزیع مکانیکی و غیره. مجموع وزنهای همه این قسمت ها بار مرده ساختمان را تشکیل می دهد.

به نظر می رسد که تعیین وزن مصالح و از آنجا بار مرده ساختمان کار ساده ای باشد. اما به دلیل مشکلات گوناگون در تجزیه و تحلیل دقیق بارها تخمین بارها ممکن است 15 تا 20 درصد و یا حتی بیشتر در خطا باشد.

در مرحله اولیه طرح برای مهندس محاسب پیش بینی دقیق وزن مصالح ساختمانی که هنوز انتخاب نشده اند کاری غیر ممکن است. مصالح ناسازه ای مشخصی که باید انتخاب شوند شامل صفحات پیش ساخته نما، لوازم روشنایی، قطعات سقف،لوله ها، مجرا ها، خطوط برق ،و اجزای نیازمندیهای داخلی خاص ساختمان می باشند.

وزن عناصر تقویت کننده و اتصالات در سازه های فولادی فقط به صورت درصدی از وزن کل تخمین زده می شود. وزن واحد حجم مصالح که به وسیله تولید کنندگان یا آئین نامه ها داده می شود همیشه با وزن واحد حجم محصول تولید شده مطابقت ندارد. اندازهای اسمی اجزاء ساختمان ممکن است با اندازه های واقعی اختلاف داشته باشد .

:: بار زنده ساختمان

فرق اساسی بارهای زنده با بارهای مرده در این است که بارهای زنده متغیر و غیر قابل پیش بینی هستند. تغییر در بارهای زنده نه تنها در طول زمان اتفاق می افتد بلکه همچنین تابعی از مکان می باشد. این تغییر ممکن است در مدت زمان کوتاه یا طولانی صورت گیرد. بدین ترتیب تقریبآ غیر ممکن است که بارهای زنده را به صورت استا تیکی تخمین زد. بارهایی که بوسیله اشیاء یا اشخاص در ساختمان ایجاد می شوند به نام بارهای سکنی موسوم هستند. این بارها شامل وزن اشخاص، مبل ها، جدا کننده های متحرک، گاو صندوق ها، کتابها و دیگر بارهای نیمه دائم و موقتی که روی ساختمان اثر می کنند ولی جزئی از سازه نیستند و جزء بار مرده به حساب نمی آیند .

بارهای متمرکز، نشان دهنده اثر بار منفرد ممکن در نقاط بحرانی مثل کفهای پله، سقفهای قابل دسترس، گاراژهای توقف و دیگر نقاط آسیب پذیر با تنشهای متمرکز زیاد می باشند.

:: بار اجرایی ساختمان

اجزاء سازه به طور کلی برای بارهای مرده و زنده طرح می شوند. اما یک قطعه سازه ممکن است در موقع اجرای ساختمان تحت بارهایی خیلی بیشتر از بارهای طرح قرار بگیرد. اینگونه بارها که موسوم به بارهای اجرائی هستند قسمت مهمی را در طرح اجراء سازه تشکیل می دهند.

هر پیمانکاری در طول زمان روش اجرایی را توسعه می دهد که برای خودش اقتصادی بودنش ثابت شده است. هر چند که معمار ممکن است ساختمان را طوری طرح کند که برای یک روش اجرایی معینی مناسب باشد، او ممکن است که از روشهای اجرایی یکایک پیمانکاران آگاهی نداشته باشد. پیمانکاران معمولآ مصالح و وسائل سنگین را روی سطح کوچکی ازسازه انباشته می کنند. این عمل ایجاد بارهای متمرکزی میکند که خیلی بیشتر از بارهای زنده فرض شده برای سازه طرح شده می باشد .در چنین شرایطی شکست نتیجه شده است .

یک مشکل اساسی در اجرای سازه های بتنی وقتی ایجاد می شود که پیمانکار پایه های تقویتی و قالب بندی را قبل از انقضای مدت کافی برای عمل آمدن بتن بردارد. مقاومت بتن با زمان زیاد میشود. ولی از آنجایی که برای پیمانکار زمان پول است او ممکن است قالب ها را قبل از اینکه بتن به مقاومت حداقل طرح برسد بردارد. در چنین صورتی جزئی از سازه ممکن است تحت اثر بارهائی قرار بگیرد که قادر به تحمل آنها نباشد و شکست حاصل شود.

:: بارهای برف ، باران و یخ

مشاهده ارتفاع و تراکم برف در طول سالیان دراز منجر به پیش بینی معقول حداکثر بار برف شده است. بار برف را لازم است فقط برای بامها و سطوح دیگر ساختمان که ممکن است برف جمع کننده از قبیل حیاط های بالا آورده شده،بالکن ها و سقف های آفتابگیر در نظر گرفت. بار برف که به وسیله آئین نامه ها تعیین شده است بر اساس حداکثر برف روی زمین می باشد. غالبآ این بارها بیشتر از بار برفی که روی بام اثر میکند می باشد. زیرا باد مقداری از برف های شل را از روی بام به دور می ریزد یا بدلیل از دست رفتن گرما از طریق بام، برف آب و بخار می شود. آئین نامه ها معمولآ در صدی از بار برف را روی بام شیب دار کم می کنند، زیرا روی چنین سطوحی برف به سهولت از روی بام به پائین می لغزد. ولی بعضی از انواع بام ها ممکن است روی رفتار باد اثر بگذارند و باعث شوند که بار برف به مقدار زیاد در یک قسمت از بام ذخیره شود.با وجود اینکه اغلب در محاسبه بار زنده به آب فکر نمی شود حتمآ باید در موقع طرح آنرا به خاطر داشت. بار باران به طور کلی کمتر از بار برف است، ولی باید به خاطر داشت که ذخیره شدن آب منجر به مقدار قابل ملاحظه ای بار می شود.

همچون که آب جمع می شود بام تغییر شکل داده خم می شود و این باعث می شود که آب بیشتری جمع شود و منجر به تغییر شکل زیاد تری گردد. این پدیده که موسوم به حوض شدن می باشد ممکن است باعث فرو ریختن نهایی بام شود.

یخ روی اجزاء بیرون آمده به خصوص روی قطعات تزئینی خارجی که در غیر این صورت جز بار وزنشان باری دریافت نمی کنند جمع می شود. از این رو لازم است که این قطعات چنان طرح و اتصال داده شوند که بارهای سنگین قندیل های یخ را تحمل کنند. به علاوه، تشکیل یخ روی سازه های خرپایی باز باعث ازدیاد سطح و وزن شده که منجر به اضافه شدن باد می شود.

:: بار باد روی ساختمان

آسمان خراشهای اولیه به اثرات پیچیده نیروی جانبی ایجاد شده بوسیله باد آسیب پذیر نبودند.وزن عظیم ساختمان با دیوارهای باربر ساخته شده از مصالح بنایی چنان بود که نیروی باد قادر نبود به نیروهای جاذبه به زمین غلبه کند. حتی موقعی که روش دیوار حمال بوسیله سازه قاب صلب در اواخر قرن 19 جایگزین شد، نیروی جاذبه عامل تعیین کننده اصلی بود.

نماهای سنگی سنگین با بازشدگی های کوچک، ستونهای نزدیک به هم، قطعات سرهم شده حجیم قابها، و دیوارهای جداکننده سنگین هنوز چنان وزنی را ایجاد می کردند که عمل باد یک مشکل اساسی نبود.

آسمان خراشهای دیوار شیشه ای سالهای 1950 با فضای باز داخلی مطلوب و وزن نسبتا کم برای اولین بار در مقابل نیروهای باد واکنش نشان دادند.با معرفی قاب فولادی سبک وزن، دیگروزن یک عامل محدود کننده ارتفاع آسمان خراشها نبود. ولی عصر ساختمانهای بلند با خود مشکلات جدیدی آورده است برای اینکه وزن مرده کاهش داده شود وفضاهای بزرگتر و انعطاف پذیر ایجاد گردد تیرهای با دهنه زیاد، جدا کننده های داخلی بار نبر متحرک ودیوارهای پیرامونی بارنبر ساخته شده است.همه این ابداعات از صلبیت کلی سازه ها کم کرده اند، به طور یکه حالا سختی جانبی (با تغییر مکان جانبی) یک ساختمان ممکن است تعیین کننده تر از مقاومتش باشد. اثر باد یک مسئله اساسی برای طرح ساختمانهای بلند شده است . درک باد و پیش بینی رفتارش به صورت علمی دقیق ممکن است غیر ممکن باشد. عمل باد روی ساختمان، شکل،باریکی و ترکیب نمای سازه مورد نظر و نحوه قرار گرفتن ساختمانهای مجاور دارد.

:: بار ناشی از تغییرات حجم مصالح

تغییرات حجم مصالح در اثر انقباض،غرش و آثار حرارتی به وجود می آید. موقعی که از واکنش طبیعی و آزاد اعضاء ساختمان در سر حد ها یشان جلوگیری می شود در آنها نیرو ایجاد میگردد.در جایی که این تغییرات حجم محدود می شود نقش های محوری و دورانی در ساختمان ایجاد گردد.

تغییر حجم تابعی از شکل و اندازه ساختمان،مصالح ،سختی اعضاء سازه ای و نوع اتصالات می باشد. با به کار بردن مانع در نقاطی از ساختمان که تنش های محوری و دورانی ممکن است ایجاد شود می توان تغییرات حجم را کنترل کرد و این به معنی طرح اعضاء برای تحمل این نقش ها می باشد .واضح است که تغییرات حجم را با استفاده از درزهای انبساط که در آنها حرکت به آزادی صورت می گیرد می توان کنترل نمود.

:: بار ناشی از انفجار

ساختمان ممکن است مجبور باشد نه تنها نیرو های فشاری خارجی بلکه نیروهای فشاری داخلی ایجاد شده در اثر انفجار را نیز تحمل کند. فرو ریختن قسمتی از یک ساختمان آپارتمانی در لندن در سال 1968 توجه زیادی را به این بار گذاری جلب نمود. اکثر ساختمانها هرگز با چنین نیروهایی مواجه نخواهند شد،ولی احتمال انجار مواد منفجره در اثر خرابکاری یا اشتعال تصادفی گازهای آتش گیر در اثر نشت یا آتش همیشه وجود دارد.

در اثر انفجارات فشارهای زیادی در منطقه انفجار ایجاد می گردد و بارهای خیلی زیادی به عناصر ساختمان وارد می شود که منجر به ترکیدن و به خارج پرتاب شدن پنجره ها، دیوارها و کف ها می گردد. این فشار داخلی باید به صورت موضعی محدود و کنترل شود و نباید باعث فروریختگی تدریجی ساختمان گردد.

علل ممکن برای بارهای انفجاری خارجی از غرش های صوتی نسبتآ کم اهمیت است (مانند پنجره های شکسته شده و دیوارهای گچی ترک خورده). تحقیقات وسیعی روی واکنش سازه ها در برابر اثرات سلاحهای اتمی در جریان است تا بتوان ساختمان را چنان طرح کرد که در مقابل حمله اتمی مقاوم باشند.

:: ترکیب بارها روی ساختمان

ساختمانهای بلند درطول عمرشان در معرض بارهای متعدد می باشد و بسیاری از بارها به طور همزمان روی سازه وارد می شود.اگر بارها خط اثر مشترک داشته و با یکدیگر باید ترکیب شود. این شرط لازم می سازد که در طرح سازه ها تمام ترکیبات ممکن بارها در نظر گرفته شود.

احتمال وقوع بارهای ترکیب شده باید به طور آماری ارزیابی و اثر آن تخمین زده شود. هرچقدر که اثر بار با دقت بیشتری تعیین شود لزوم انتخاب ضرایب اطمینان بزرگتر برای جبران عوامل مجهول کاهش می یابد.

ترکیب موثر و عملی بارها در آئین نامه ها مشخص گردیده است. بطور کلی تشخیص داده شده است که ماکزیمم بالای ناشی از تغییرات جوی و زلزله احتمالا هرگز با مقدار کامل بارهای زنده دیگر همزمان رخ نخواهد داد از این رو موقعی که بار زنده کامل به طور همزمان با بارهای ماکزیمم باد یا زلزله به کار می رود آئین نامه اجازه می دهد که بر تنشهای مجاز 33 درصد افزوده شود.

http://moein-omran.blogfa.com

قوانین و اصولات کلی برای ساخت یک بیمارستان

قوانین و اصولات کلی برای ساخت یک بیمارستان كه در اين چهار چوب پيروي شود.

پايگاه اطلاع رساني انبوه سازان ايران
معماری بیمارستان
در حالی که بیمارستان‌ها در گذشته آگاهانه جهت مصارف پزشکی، جراحی طراحی می شدند امروزه می‌توان شاهد تغییر جهت به سوی انسانگرایی در امکانات بیمارستانی بود. بیمارستانهای امروزی بیشتر به هتل شبیه هستند. وجود فضای اقامتی دارای اهمیت بیشتری نسبت به طرح‌های سرد بهداشتی در بیمارستانهای گذشته است. مدت زمان بستری و اقامت بیمار به طور پیوسته کوتاهتر می‌شود و علاقه به اتاق‌های یک تختی یا دو تختی (در خصوص بیمارهای خصوصی) بیشتر شده است.
قسمت بندی و تعین محدوده
یک بیمارستان عمومی به بخشهای مراقبت، معاینه و درمان، انبار و محل نگهداری موقت زباله، اداری و فن آوری تقسیم می‌شود. قسمت‌های اقامتی و احتمالا بخش‌های آموزشی و پژوهشی و همچنین بخشهای حمایتی برای عملیاتهای خدماتی نیز در یک بیمارستان عمومی وجود دارند.
انواع بیمارستانها
بیمارستانها را می‌شود به گروههای زیر تقسیم کرد: کوچکترین (تا 50تخت)، کوچک (تا150 تخت)استاندارد(تا600 تخت) و بزرگ. حمایت کنندگان مالی بیمارستانها ممکن است دولت، بنیادهای نیکوکاری یا خصوصی یا ترکیبی از اینها باشند. بیمارستانها را می‌توان از جهت نوع فعالیت به بیمارستانهای عمومی، تخصصی و دانشگاهی تقسیم کرد.
بیمارستانهای دانشگاهی
بیمارستانهای دانشگاهی با بیشترین ظرفیت خدماتی را می‌توان برابر با دانشکده‌های پزشکی و بیمارستانهای عمومی بزرگ دانست. آنها امکانات تشخیص و درمانی گسترده‌ای دارند و به طور اصولی پژوهش و آموزش را به پیش می برند.سالنهای سخنرانی و اتاقهای تشریح بایستی طوری گنجانده شوند که فعالیت بیمارستان توسط ناظرین مختل نشوند. بخشها باید بزرگ باشند تا هم ملاقات کنندگان و هم ناظران را در خود جای دهند. امکانات و نیازهای ویژه بیمارستانهای پزشکی ایجاب می‌کند اتاقها به صورت ویژه‌ای طراحی شوند.
مفهوم طرح ریزی
موقعیت: محل پروژه باید دارای فضای کافی برای بخشهای اقامتی مستقل و دپارتمانهای مختلف بیمارستان باشد. بایستی در منطقه آرام باشد و در آینده نیز احتمال ساخت و ساز در اطراف آن وجود نداشته باشد مگر اینکه توسط محلهای مجاور تفکیک و مستثنی شده باشد. تجهیزات نبایستی بر اثر مه گرفتگی، باد شدید، گردوغبار، دود، بو وحشرات آسیب ببیند. زمین نباید آلوده باشد و برای گسترش فضا، زمینهای آزاد اطراف نیز در نظر گرفته شوند.
جهت:
بهترین جهت برای اتاق درمان و جراحی بین شمال غربی و شمال شرقی است. نمای بخش پرستاری در جهت جنوب به جنوب شرقی مناسب است آفتاب صبحگاهی دلپذیر، گرمای کم، مزاحمت کم نور آفتاب (احتیاج به تاریک کردن اتاق نیست)، هوای ملایم در عصر ها، اتاقهایی که رو به شرق و غرب هستند به نسبت دارای آفتاب گیری بیشتر هستند اگر چه از آفتاب زمستانی بهره کمتری می برند. جهت بخشهای بیمارستان که دارای اقامت متوسط کوتاهی هستند مهم نیست برخی مقررات انظباطی تخصصی حکم می‌کنند که بیماران در معرض نور مستقیم خورشید قرار نگیرند که اتاقهای رو به شمال برای آنها مناسب است.
 تصویر:
یک بیمارستان قرار است گسترش یابد، طراحی آن شامل چهار فاز سازندگی می‌شوند یک محیط بسته بزرگ که شامل یک پارک ساخته خواهد شد که پنجره‌ها بتوانند رو به آن باز شوند بدون آنکه صدا مزاحمت ایجاد کند.
اشکال ساختمانی درمانگاه بیماران سرپایی:
محل درمان بیماران سر پایی دارای اهمیت ویژه‌ای است. جداسازی مسیر بیماران سرپایی و بیماران بستری شونده باید در اوائل برنامه ریزی مد نظر قرار گیرد.با این حال راه دسترسی به دپارتمانهای پرتو ایکس و جراحی بایستی نزدیک باشد. امور مربوط به بیماران سرپایی هر روز مهمتر می‌شوند. بنابراین به اتاق‌های انتظار بزرگتر و اتاقهای درمان بیشتری نیاز است.
برای دیدن ادامه بر روی ادامه مطلب کلیک نمائید
ادامه نوشته

آسمان خراش

ساختمانهای بلند از هر جهت به شهر مربوط هستند آنهابرای تجمع انبوه جمعیت، کمیابی و هزینه سنگین زمین جوابی طبیعی می باشندتوده ساختمان بلند از توجیه مفهوم محیط طرح و جواب او به هدف ساختمان نتیجه می شود.

یک ساختمان بلند ممکن است آزاد قرارگرفته یعنی قائم و باریک یا افقی و حجیم باشد و یا ممکن است مستقیماً در مجاورت ساختمان های بلند دیگر واقع شود در هر دو روش ساختمان اساساً یک جسم مجزا می باشد ولی ساختمان بلند آینده ممکن است جزء مکمل یک ساختمان بزرگ شهر باشد که در آن ساختمان ها یا خانه های فعالیت بوسیله سیستم های تغییر مکان چند ترازی با یکدیگر ارتباط دارند.
از لحاظ ارتفاع ساختمان های کمتر از 10 طبقه تا بیشتر از 100 طبقه جزء ساختمانهای بلند به شمار می آیند برای تعیین ارتفاع یا حجم ساختمان برنامه ریزی نسبتاً پیچیده ای لازم است بعضی از عواملی که باید در نظرگرفته شود عبارتند از احتیاجات مشتری در مقابل زمین موجود و موقعیت زمین در ارتباط باجنبه های محیطی برای مثال خدمات لازم برای نگهداری ساختمان و رفاه ساکنان آن یا اثر بوم شناسی ساختمان یا خصوصیت منظره ای چشم انداز اطراف آن.
ساختمان بلند در زمینه شهری:
توسعه ساختمانهای بلند از هر جهت دنبالگر رشد شهری باشد تحول شهر سازی که عصر صنعتی کردن شهر ها شروع شد مردم از مناطق روستایی به مناطق شهری کوچ کردند و بدین وسیله باعث افزایش تراکم جمعیت در شهرها گردیدند انقلاب تکنولوژیک با ارائه سازه فولادی سبک وزن آسانسورو سیستم های تهیه انرژی لازم برای شهر قائم با تراکم زیاد به این فشار عکس العمل نشان داد.
در ابتدای قرن اخیر بلوک های ساختمان به ارتفاع حدود 20طبقه در مقابل یکدیگر قرارمی گرفتند که فقط بوسیله خیابانهای تنگ و تاریک از یکدیگر جدا می شدند و دره های شهری تشکیل می دادندهدف عمده جادادن حداکثر اشخاص در حداقل سطح زمین بود تراکم جمعیت حاصله و اثر آن برروی مردم و شهر به عنوان سیستم متشکلی که در آن فعالیتهای گوناگون روی یکدیگر تاثیرمی گذارند به ندرت در طرح مورد توجه بود احتیاج به نور هوا و سطح زمین باز برای فعالیتهای عمومی منجر به تکامل تدریجی آسمانخراشهای آزاد ایستاده گردید این نوع ساختمان ها ارتفاع خیلی بیشتری دارند زیرا باید تراکمی حداقل معادل تراکم بلوک ساختمانی راکه جانشین آن می شوند ایجاد نمایند انقلاب تکنولوژیک کنونی به آن اندازه پیشرفت کرده است که بتوان آسمان خراشهای منفرد باهزینه ای بنانمود که از لحاظ اقتصادی امکانپذیر باشد.
طرح ساختمان های بلند از لحاظ انقلاب تکنولوژیک یا فضای ماده ای نسبتاً خوب درک شده است ولی بررسی فضای رفتاری یعنی تشخیص نیازهای انسانی و قابلیت سازگاری بامحیط هنوز در مرحله اولیه پیشرفت می باشد جدایی و عدم ارتباط بین مردم در ساختمان و نبودن تماس بازندگی خیابانی بعضی از مسائلی هستند که طراحان کوشش دارند بر آنها غلبه کنند.
هر چند که اکنون تا حدودی تراکم ساختمان های بلند در شهرهابوسیله مقررات منطقه بندی کنترل می شود این طرح بر اساس مفهوم دینامیکی ترکیب تمام شهر نمی باشد اثر تجمع نزدیک به هم ساختمان های بلند روی محیط شهر بیشترین اهمیت را دارد تاثیر شدید بعضی از آسمان خراشهای بزرگ همچون برج 109 طبقه سیرزدر شیکاگوبه ارتفاع بیش از یک چهارم مایل روی شهر واضح است سیستم برق این ساختمان می تواند احتیاجات یک شهر 147000 نفره را تامین کند و دستگاه های تهویه مطبوع آن قادر به خنک کردن 6000 خانه یک خانواری می باشد جمعاً 102 آسانسور لازم است که 16500 نفر استفاده کننده را در روز به قسمت های مختلف ساختمان برساند در ذهن خود آسانسورهای متعدد راهمچون خیابانهای بن بست و سرسراهای ساختمان را همچون میدانهایی مجسم سازیدکه در آنها مردم بوسیله آسانسورهای دوطبقه سریع السیر که از یک سرسرا به سرسرای بعدی می روند و یا آسانسورهای محلی کم سرعت که از یک نقطه ساختمان به نقطه دیگر آن عبور می کنند از آنجایی که ساختمان شامل همه خدمات و تفریحگاههای لازم می باشد به طور نظری افراد هرگز مجبور به ترک آن نمی باشند امکانات رفاهی ساختمان از قبیل فروشگاه، تفریح گاه ،محلهای نمایش فیلم و تئاتر و غیره و خدمات بهداشتی فرهنگی ایمنی حمل نقل پارکینگ آب برق و گاز و تلفن و فاضلاب معادل امکانات رفاهی لازم برای یک شهر کوچک می باشد.
ساختمانی با این مقیاس شهری در داخل شهر تشکیل می دهد طرح چنین سیستم پیچیده ای به یک برنامه ریزی اصولی مسائل اجتماعی بوم شناسی، اقتصادی و سیاسی ایجاد شده نه فقط در زمینه شهری اطراف ساختمان بلکه همچنین در محیط خود ساختمان نیاز دارد.
برای بسیاری از شهرهای بزرگ، ساختمان بلند تنها جواب رشد مداوم تراکم جمعیت می باشد آن را نباید به دلیل اثرات غیر انسانی کننده اش رد کرد یا به عنوان سمبل موفقیت انقلاب تکنولوژیک کنار گذاشت بر عکس موسسات آموزشی و تحقیقی باید برای تحقیق اصولی روی محیط ساختمان بلند و اطرافش برای بهبود شرایط زندگی در آن ابتکار عمل خیلی بیشتری را بدست بگیرد.
ادامه نوشته

شرح کامل مسائل اجرائی بتن سبكدانه سازه ای

بسیاری از اصول اجرائی حاكم بر بتن ریزیهای معمولی در بتن ریزی با بتن سبــكدانه سازه ای كماكان از اهمیت برخوردار است . مسلما" در بتن های غیر سازه و سبكدانه بسیاری از نكات مورد نظر نمیتواند با اهمیت تلقی شود و عدم رعایت برخی قواعد تا آنجا كه به وزن مخصوص بتن ریخته شده لطمه نزند و آنرا بالا نبرد با اهمیت تلقـــی نمیشـــود.

اصل پیوستگی و تدوام در بتن ریزی ( عدم ایجاد درز سرد ) ، اصل عدم گیرش یا نزدیكی به گیرش در بتن قبل از ریختن و تراكم ، اصل عدم جدا شدگی مواد (نا همگنی ) بتن ، اصل رعایت دمای مناسب بتن ریزی ، اصل عدم آلودگی بتن به مواد مضر ، اصل رعایت تراكم صحیح ، اصل رعایت پرداخت صحیح سطح بتن ، اصل انتخاب صحیح اسلامپ با توجه به وضعیت قطعه و وسایل تراكمی موجود ، اصل رعایت و بكارگیری نسبت ها و مقادیر صحیح مصالح و پرهیز از مصرف مواد نا مناسب ، و در نهایت اصل عمل آوری صحیح و قالب برداری به موقع و با دقت همواره در این نوع بتن ریزیها مانند بتن های معمولی از اهمیت برخوردار می باشد .

استفاده از مواد مناسب و نسبت های صحیح :
بكار گیری مواد و مصالح مناسب طبق مشخصات پروژه ، رعایت مصرف سیمان تازه و غیر فاسد از نوع مورد نظر و مطابق با استاندارد مورد قبول كاملا" مهم می باشد . توزین یا پیمانه كردن دقیق و صحیح مصالح مصرفی طبق طرح اختلاط ارائه شده از اهمیت برخوردار است . بهتر است مصالح سنگی مصرفی به ویژه سبكدانه در شرایطی قرار گیرد كه نوسانات رطوبتی اندكی داشته باشد . برای مثال خوبست بدانیم لیكاهای موجود در ایران میتواند تا بیش از 30 درصد آب را در خود جذب و نگهداری كند . بنا براین بین سنگدانه كاملا" خشك و كاملا" اشباع تفاوت فاحشی وجود دارد و میتواند بر اسلامپ حاصله و نسبت آب به سیمان و در نتیجه به مقاومت و دوام بتن سبكدانه سازه ای اثر چشمگیری باقی گذارد . بهر حال اگر بدانیم مثلا" سنگدانه های ما حدود 5 درصد رطوبت دارد میتوانیم مقدار آب مصرفی را تنظیم نمائیم تا به طرح اختلاط مورد نظر دست یابیم .
باید دانست مشكل بزرگ تولید بتن سبكدانه همین تغییر رطوبت است و لذا كنترل نسبت آب به سیمان در این بتن ها مشكل می باشد و حتی مانند بتن های معمولی نیز نمیتوان با كنترل اسلامپ به نتیجه مورد نظر رسید .

انتخاب اسلامپ صحیح :
مانند بتن های معمول انتخاب اسلامپ میتواند مهم باشد . از نظر جدا شدگی ، آب انداختن ، رسیدن به تراكم مورد نظر با توجه به ابعاد قطعه ، طرز قرارگیری ، وضعیت درهمی میلگردها ، وسایل تراكمی موجود قابل تأمین این انتخاب كاملا" معنا دار و با اهمیت است . به دلیل سبكی سنگدانه ها بویژه سبكدانه های درشت احتمال جدا شدگی در بتن شل افزایش می یابد . لذا اسلامپ های بیش از ده سانتی متر ابدا" مطلوب نیست مگر اینكه بتن پر عیاری داشته باشیم ، همچنین با وجود موادی مانند میكرو سیلیس ممكنست این جدا شدگی به حداقل برسد .
بنا براین اگر قرار باشد بتن سبكدانه پمپی با اسلامپ 10 تا 15 سانتی متر را داشته باشیم عیار سیمان باید از حدود 400 كیلو در متر مكعب فراتر رود . در حالیكه اگر اسلامپ كمتر باشد حداقل عیار سیمان در ACI برابرkg/m3 335 مطرح شده است . در حالات عادی اسلامپ های 5 تا 8 سانتی متر برای بتن سبكدانه غیر پمپی و اسلامپ 7 تا 10 سانتی متر برای بتن سبكدانه پمپی مطلوب تلقی میشود بدون اینكه این اعداد جنبه آئین نامه ای داشته باشد .
تغییرات اسلامپ در طول اجراء در بتن سبكدانه بسیار جدی است . در بتن های معمولی نیز این پدیده به چشم میخورد بویژه وقتی سنگدانه های درشت خیلی خشك باشند ممكن است حتی در طول 15 دقیقه پس از ساخت شاهد افت جدی در اسلامپ باشیم . در بتن سبكدانه این امر به شدت وجود دارد . فرض كنید اگر در طول 15 تا 30 دقیقه جذب آب سبكدانه 5 تا 10 درصد فرض شود و فقط سبكدانه درشت به میزان 300 كیلو داشته باشیم 15 تا 30 كیلو آب را جذب می كند كه كاهش اسلامپ 6 تا 15 سانتی متر را میتوان شاهد بود . اگر قرار باشد طول مدت حمل و ریختن و تراكم زیاد باشد كاملا" دچار مشكل میشویم . همچنین در بتن های پمپی ، این كاهش و افت در اسلامپ مسئله ساز است . بنا براین سعی میشود كه چنین پروژه هائی حتی الامكان از 24 ساعت قبل از ساخت بتن ، سبكدانه ها را خیس كرد (Presoaking ) تا آب قابل ملاحظه ای را جذب نماید و پس از اختلاط بتن شاهد افت اسلامپ زیادی نباشیم . این خیس كردن ممكن است حتی از سه روز قبل شروع شود ادامه یابد . خیس كردن سنگدانه ممكنست با آب پاشی تحت فشار و بصورت بارانی باشد و یا از سیستم خلاء برای نفوذ سریعتر آب به داخل سبكدانه استفاده شود كه در ایران روش ساده اول معمولتر و عملی تر می باشد . ریختن آب و سبكدانه در مخلوط كن و اضافه كردن سیمان و غیره پس از مدتی تأخیر میتواند به افت اسلامپ كمتر منجر شود .
میزان جذب آب سبكدانه ها علاوه بر زمان تابع میزان آب موجود در آن ( رطوبت اولیه ) نیز می باشد كه پیش بینی جذب آب را در مدت معین دشوار می كند مگراینكه قبلا" آزمایشهائی را با رطوبت اولیه موجود انجام داده باشیم .
اسلامپ های كمتر از 5 سانتی متری نیز كار تراكم را با مشكل مواجه می سازد و فضای خالی زیادی را در بتن بهمراه دارد .
بسیاری از تحقیقات نشان داده اند مقاومت و دوام بتن های سبكدانه كه با سبكدانه خشك ساخته شده اند بهتر از وقتی است كه از سبكدانه قبلا" خیس شده یا اشباع شده استفاده گشته است .

اصل رعایت دمای مناسب :
حداقل و حداكثر دمای مجاز و مطلوب در أئین نامه ها مشخص شده است . رعایت این امر برای بتن سبك سازه ای و با دوام بشدت ضروری است و از این نظر تفاوتی با بتن معمولی وجود ندارد .
حداقل دمای مجاز 5+ درجه سانتی گراد و حداقل دمای مطلوب 10+ درجه سانتی گراد است . حداكثر دمای مجاز معمولا" 32-30 درجه سانتی گراد تا هنگام گیرش می باشد و بهتر است از این حد فاصله معقولی را داشته باشیم . در هوای سرد و گرم كه بتن با دمای مناسب تولید می شود نباید در حین اجرا آنقدر تأخیر و معطلی بوجود آورد كه با تبادل گرمائی ، دمای مطلوب از دست برود .

اصل همگنی ( عدم جداشدگی ) :
اصول جداشدگی و عوامل مؤثر بر آن برای بتن سبكدانه همچون بتن معمولی است ، اما برای بتن سبكدانه یك عامل دیگر یعنی اختلاف در چگالی ذرات و خمیر سیمان یا ملات میتواند به جداشدگی منجر گردد . عوامل جداشدگی میتوانند داخلی باشند كه صرفا" استعداد جداشدگی را بوجود می آورند و یا عامل خارجی باشند كه مربوط به اجرا هستند و استعداد را شكوفا می كنند . از عوامل داخلی بالا رفتن حداكثر اندازه سبكدانه می باشد كه معمولا" باعث جداشدگی میگردد و بهتر است حداكثر اندازه سبكدانه برای بتن سازه ای به 20 میلی متر محدود شود و توصیه می گردد تا از حداكثر اندازه 15 – 12ر میلی متر استفاده شود . جالب است بدانیم معمولا" با افزایش حداكثر اندازه ، چگالی حجمی خشك ذرات سبكدانه درشت كاهش می یابد و از این نظر نیز امكان جداشدگی را قوت می بخشد .
بالا رفتن اسلامپ به افزایش استعداد جداشدگی منجر می شود . كاهش میزان عیار سیمان و مواد سیمانی و چسباننده میتواند بشدت باعث افزایش استعداد جداشدگی گردد . اختلاف وزن مخصوص ( چگالی ) ذرات سبكدانه با خمیر سیمان و یا اختلاف چگالی ذرات ریزدانه و درشت دانه به بالا رفتن استعداد جداشدگی منجر می گردد . بالا رفتن نسبت آب به سیمان به افزایش پتانسیل جداشدگی می انجامد . درشت تر شدن بافت دانه بندی سنگدانه ها معمولا" امكان جداشدگی را افزایش می دهد . وجود مواد ریز دانه و چسباننده مانند پوزولان و میكروسیلیس و سرباره ها می تواند باعث كاهش استعداد جداشدگی بتن سبكدانه گردد ، همچنین بكارگیری مواد حبابزا و ایجاد حباب هوا میتواند جداشدگی و آب انداختن را كاهش دهد ضمن اینكه روانی و كارآئی مورد نظر تأمین میگردد .
از عوامل خارجی می توان حمل نامناسب ، ریختن غلط ، استفاده از شوت های طولانی و یا شیب نامطلوب ، برخورد بتن با قالب و میلگردها ، ریختن بتن از ارتفاع زیاد بدون لوله و قیف هادی و یا بدون پمپ معمولا" به جداشدگی منجر میشود . بخاطر حساسیت جداشدگی در این بتن ها باید دقت بیشتری را اعمال نمود . باید دانست نتیجه جداشدگی در بتن سبكدانه نیز از نظر مقاومتی و دوام بمراتب حادتر و مضرتر از بتن معمولی است .

اصل عدم آلودگی بتن به مواد مضر :
در طول حمل و ریختن و تراكم نباید مواد مضر اعم از مواد ریزدانه رسی ( گل و لای ) ، مواد شیمیایی شامل چربی ها و مواد قندی یا انواع مختلف نمكها و آب شور و غیره با بتن مخلوط شود . مخلوط شدن موادی همچون گچ نیز توجیه ندارد . بهرحال در این رابطه هیچ تفاوتی بین بتن معمولی و سبكدانه سازه ای وجود ندارد .

اصل عدم كاركردن با بتن در مرحله گیرش :
اگر عملیات بتن ریزی با بتنی كه در مرحله گیرش است انجام گیرد مقاومت و دوام آن بشدت كاهش می یابد و نفوذپذیری آن زیاد میشود . از این نظر بتن مانند ملات گچ زنده است كه اگر آن را مرتبا" بهم بزنیم و ورز دهیم تبدیل به ملات گچ كشته میشود كه بشدت كم مقاومت و كم دوام است ، هرچند گیرش آن به تأخیر می افتد و یا اصلا" خود را نمی گیرد و صرفا" خشك می شود . بهرحال نباید بتن را در هنگامی كه در شرف گیرش است مخلوط نمود و یا ریخت و متراكم كرد . از این نظر بین بتن سبكدانه و بتن معمولی اختلافی احساس نمی گردد .
مسلما" در هوای گرم و یا بتن با دمای زیاد ، گیرش زودتر حاصل میشود . زمان گیرش تابع نوع سیمان ( جنس و ریزی ) ، نسبت آب به سیمان و وجود مواد افزودنی می باشد . برای افزایش زمان گیرش و ایجاد مهلت برای عملیات اجرائی می توان از بتن خنك ، كار در هنگام خنكی هوا یا شب ، سیمانهای كندگیر كننده استفاده نمود .

اصل پیوستگی و تداوم بتن ریزی ( عدم ایجاد درز سرد در بین لایه ها ) :
اگر در هنگام بتن ریزی به هر علت ، لایه زیرین قبل از ریختن و تراكم لایه روئی گیرش خود را انجام داده باشد درز سرد Cold Joint بوجود می آید . در این رابطه فرقی بین بتن سبكدانه و معمولی وجود ندارد . باید با تجهیز مناسب كارگاه ، افزایش توان تولید و حمل در ریختن و تراكم بتن ، افزایش زمان گیرش بتن و یا ایجاد درزهای اجرائی مناسب و كاهش سطح بتن ریزی و یا كاهش ضخامت لایه ها امكان ایجاد درز سرد را به حداقل رساند .

تراكم صحیح بتن سبكدانه :
از آنجا كه بتن های سبكدانه بشدت در معرض جدا شدگی هستند ، تراكم با قدرت زیاد و یا مدت بیش از حد مشكلات جدی را بوجود می آورد . به محض اینكه احساس می نمائیم كه شیره یا سنگدانه ها شروع به روزدن می نمایند باید تراكم را قطع كرد . لرزش ، بیش از فشار و ضربه میتواند موجب جدا شدگی گردد.
به هر حال باید كاملا" هوای بتن خارج و فضای خالی به حداقل برسد تا مقاومت و دوام كافی ایجاد گردد.

پرداخت سطح بتن سبكدانه :
آب انداختن بتن همواره مشكل بزرگی در پرداخت نهائی سطح بتن می باشد و این امر اختصاص به بتن سبكدانه ندارد . خوشبختانه به دلیل جذب آب تدریجـــی توسط سبكدانه ها ، آب انداختن میتواند به كمترین مقدار برسد اما اگر سبكدانه ها قبل از اختلاط كاملا" اشباع شده باشد امكان آب انداختن بیشتر می گردد . كم بودن عیار سیمان و مواد چسباننده سیمانی ، فقدان مواد ریزدانه ، عدم وجود حباب هوا در بتن ، درشتی بافت دانه بندی ، افزایش حداكثر اندازه سبكدانه ، گردگوشه گی سنگدانه ها و بافت صاف سطح سنگدانه ، بالا بودن اسلامپ ، زیادی نسبت آب به سیمان و ... میتواند موجب افزایش آب انداختن شود .
وقتی بتن آب می اندازد باید اجازه داد آب تبخیر گردد و اگر تبخیر به سرعت میسر نمی گردد یا نگران گیرش هستیم باید سعی كنیم آب روزده را با وسیله مناسبی ( گونی یا اسفنج ) از سطح پاك نمائیم و سپس سطح را با ماله چوبی و بدنبال آن با ماله فلزی یا لاستیكی صاف كنیم .
عدم رعایت این نكات موجب افزایش نسبت آب به سیمان در سطح و كاهش مقاومت و دوام و افزایش نفوذپذیری بتن سطحی می گردد .

عمل آوری بتن و سبكدانه :
هر چند عمل آوری رطوبتی و حرارتی بتن سبكدانه با بتن معمولی تفاوت چندانی ندارد اما اعتقاد بر این است كه سبكدانه ها بعلت پوكی و تخلخل و جذب آب میتوانند در صورت فقدان عمل آوری رطوبتی از ناحیه اجرا كنندگان ، بخشی از آب خود را در اختیار خمیر سیمان قرار دهند و توقف شدیدی در هیدراسیون سیمان رخ ندهد . این امر را عمل آوری داخلی بتن سبكدانه می گویند .

كنترل كیفی بتن سبكدانه :
كنترل كیفی بتن سبكدانه شامل بتن تازه و سخت شده است . كنترل روانی ، وزن مخصوص و هوای بتن از مهمترین كنترلهای بتن تازه است . استفاده از آزمایش اسلامپ ، میز آلمانی ( روانی ) و درجه تراكم برای این بتن ها پیش بینی شده است . وزن مخصوص بتن تازه سبكدانه متراكم معمولا" كنترل می شود و در آئین نامه های مختلف اختلاف 2 تا 3 درصد مجاز شمرده میشود ( نسبت به طرح اختلاط ) . هوای بتن را برای بتن سبكدانه نمیتوان بكمك روش فشاری بدست آورد و حتما" باید از روش حجمی بهره گرفت . برای بتن سبكدانه سخت شده ، وزن مخصوص ، مقاومت فشاری ، كششی خمشی و نفوذپذیری ، جذب آب ، جذب موئینه و آزمایشهای دوام در برابر خوردگی قابل كنترل است .
وزن مخصوص بتن سخت شده سبكدانه بصورت اشباع و خشك اندازه گیری میشود و گاه بجای خشك كردن از جمع زدن مقادیر اجزاء در هر متر مكعب و افزودن مقداری رطوبت ثابت به آن ، وزن مخصوص بتن سخت شده را بدست می آورند .
برای تعیین مقاومت فشاری و سایر پارامتر ها تفاوت چندانی بین بتن سبكدانه و معمولی وجود ندارد و شباهت جدی و كامل بین آنها وجود دارد . بهرحال ممكنست در مواردی نتایج حاصله در مقایسه با بتن های معمولی گمراه كننده باشد . مثلا" اگر جذب آب بتن سبكدانه را بصورت درصد وزنی گزارش كنیم و آنرا با جذب آب بتن معمولی مقایسه نمائیم دچار اشتباه میشویم و لذا توصیه میشود جذب آب بتن بصورت درصد حجمی گزارش گردد .

بتن فاقد ریزدانه ( Concrete finez – No ) :
اگر سنگدانه های درشت تك اندازه را با سیمان و آب مخلوط كنیم و در قالب بدون تراكم بریزیم بتن فاقد ریزدانه و متخلخل بدست می آید كه از وزن مخصوص كمتری نسبت به بتن معمولی برخوردار خواهد بود . اگر چگالی سنگدانه ها در حدود معمولی باشد وزن مخصوص بتن فاقد ریزدانه حدود 1600 تا kg/m3 2000 بدست می آید اما اگر از سبكدانه درشت استفاده نمائیم ممكنست وزن مخصوص بتن حاصله از kg/m3 1000 كمتر شود ( حتی تا حدود kg/m3 650 ) . بهرحال در هر مورد بتن مورد نظر سبك یا نیمه سبك تلقی می شود اما اگر سنگدانه معمولی استفاده شود نمیتوان آنرا بتن سبكدانه دانست .
مسلما" اگر سنگدانه تك اندازه بكار نرود و حاوی ذرات ریز تا درشت باشد وزن مخصوص بتن حاصل نیز زیاد خواهد شد . سنگدانه درشت مصرفی باید 20-10 میلی متر باشد و 5 درصد ذرات درشتر و 10 درصد ذرات ریزتر در این نوع سنگدانه تك اندازه (Singl Size) مجاز است اما بهرحال نباید ذرات ریزتر از 5 میلی متر در آن مشاهده گردد . سنگدانه درشت بهتر است پولكی و كشیده و یا بسیار تیزگوشه نباشد . سنگدانه های گرد گوشه یا نیمه شكسته برای تولید این بتن ارجح است .
ساختار بتن فاقد ریزدانه دارای تخلخل ظاهری است و حفرات موجود در بتن با چشم براحتی دیده می شود كه در این مجموعه خمیر سیمان باید صرفا" تا حد امكان سنگدانه ها را بهم چسباند و از پر كردن فضاها با خمیر سیمان پرهیز شود زیرا وزن مخصوص بالا خواهد رفت . وجود خمیر سیمان با ضخامت حدود 1 میلی متر بر روی سنگدانه ها كاملا" مناسب است .
اگر سنگدانه معمولی بكار رود معمولا" مقدار شن اشباع تك اندازه بین 1400 تا 1750 كیلوگرم می باشد . حجم اشغالی ذرات شن در حدود 550 تا 700 لیتر در هر متر مكعب است . وزن سیمان مصرفی بین 75 تا 150 كیلو در متر مكعب یا بیشتر است كه حجم آن حدود 25 تا 50 لیتر می باشد . معمولا" نسبت آب به سیمان مصرفی 4/0 تا 5/0 می باشد كه افزایش آن می تواند به شلی خمیر سیمان و روانی آن منجر شود كه موجب جداشدگی و پرشدن خلل و فرج می گردد و بتن مورد نظر حاصل نمی شود . با كاهش نسبت آب به سیمان چسبندگی لازم بوجود نمی آید و از نظر اجرائی دچار مشكل می شویم . نسبت وزنی سیمان به سنگدانه تا می باشد . همانطور كه از محاسبات فوق بر می آید فضای خالی این بتن ( پوكی ) بین 25 تا 40 درصد می باشد و ابعاد این فضاها نیز بزرگ است درصد جذب آب بصورت وزنی حدود 15 تا 25 درصد است . طبیعتا" با افزایش مقدار سیمان و آب و یا مصرف شن با دانه بندی پیوسته ( Graded Size ) وزن مخصوص بتن بیشتر خواهد شد . توصیه می شود شن ها قبل از مصرف خیس و اشباع گردند .
طرح اختلاط این بتن ها بصورت آزمون و خطا خواهد بود و بشدت تابع شرایط ساخت بتن می باشد . بتن فاقد ریزدانه معمولا" بدون تراكم تولید می شود و اگر مرتعش یا متراكم شود بسیار جزئی خواهد بود زیرا خمیر سیمان میل به پر كردن فضای خالی بین سنگدانه ها را خواهد داشت و چسبندگی سنگدانه به یكدیگر به حداقل خواهد رسید .
معمولا" انجام آزمایش كارآئی یا اسلامپ برای این نوع بتن موردی نخواهد داشت . از آنجاكه سنگدانه تك اندازه مصرف می شود جداشدگی از نوع جدائی ریز و درشت سنگدانه معنائی ندارد و می توان آن را از ارتفاع قابل ملاحظه ریخت .
بعلت محدودیت دامنه نسبت آب به سیمان و وجود فضای خالی قابل توجه در این نوع بتن ، مقاومت فشاری این نوع بتن اغلب در حدود 5 تا 15 مگا پاسكال می باشد و طبیعتا" یك بتن سبك سازه ای تلقی نمی گردد و بصورت مسلح مصرف نمی شود . برخی اوقات سعی می كنند میلگردها را با یك لایه ضد خوردگی ( پوشش مناسب ) آغشته كنند و سپس در بتن فاقد ریزدانه بكار برند . اگر از سبكدانه برای ساخت این بتن استفاده شود ، مقاومت فشاری آن 2 تا 8 مگا پاسكال می باشد .
جمع شدگی بتن های فاقد ریزدانه بمراتب كمتر از بتن معمولی است زیرا مقدار سنگدانه در مقایسه با خمیر سیمان زیاد است و یقه قابل توجه بوجود می آورد . بتن فاقد ریزدانه سریعا" خشك می شود زیرا خمیر سیمان در مجاورت هوای موجود و فضای خالی است و علی القاعده در ابتدا از جمع شدگی بیشتری نسبت به بتن معمولی برخوردار می باشد و عمل آوری آن از اهمیت برخوردار است . قابلیت انتقال حرارتی آن بمراتب از بتن معمولی با سنگدانه مشابه كمتر است ( حدود تا ) كه با افزایش رطوبت و اشباع بودن این بتن ، این قابلیت انتقال حرارت افزایش می یابد .
مدول الاستیسیته این بتن ها بین 5 تا Gpa20 است ( برای مقاومت های 2 تا 15مگا پاسكال ) . نسبت مقاومت خمشی به فشاری حدود 30 درصد است كه از نسبت مقاومت خمشی به فشاری بتن های معمولی بیشتر می باشد . ضریب انبساط حرارتی این نوع بتن در حدود تا بتن معمولی است . نفوذپذیری زیاد از مزایا و شاید معایب این نوع بتن است . اما نكته مهم آنست كه موئینگی در این نوع بتن كم تا ناچیز می باشد . اگر اشباع از آب نباشد در برابر یخبندان مقاوم است . بعنوان یك نفوذپذیر زهكش و تثبیت شده و همچنین یك مسیر درناژ و مقاوم بسیار مفید است . بازی كردن لایه های قلوه سنگ و شن درشت و متوسط یا ریز بعنوان زهكش یا بلوکاژ و فیلتر از مشكلات اجرائی محسوب می شود بویژه اگر بخواهد باربر باشد یكی از معدود راههای حل مشكل ، استفاده از بتن فاقد ریزدانه است و در این حالت مسئله سبكی زیاد مهم نیست .
این نوع بتن مانند بسیاری از بتن های سبك می تواند جاذب صوت باشد ( نه عایق صوت ) و برای این منظور نباید سطح این بتن با اندودی پوشانده شود .
اندودكردن این بتن بسیار خوب و ساده انجام می شود . استفاده از این بتن برای روسازی و پیاده رو سازی اطراف درختان و یا پاركینگ ها بسیار مفید است ( بدلیل نفوذپذیری ) . در دیوارهای باربر با طبقات كم می توان از این نوع بتن استفاده نمود . برای ایجاد نفوذپذیری بعنوان لایه اساس یا زیر اساس میتواند بطور مؤثر عمل نماید . همچنین بعنوان یك لایه بتن مگر نفوذپذیر مناسب است در زیر دال كف یا شالوده منابع آب بتنی نیز از این بتن می توان استفاده نمود .

طرح اختلاط بتن سبکدانه ( سازه ای و غیر سازه ای )
در طرح اختلاط هر نوع بتن ابتدا باید خواسته ها را بررسی و فهرست نمود که در مورد بتن سبک نیز این خواسته ها عبارتند از : مقاومت فشاری در سن مورد نظر ، وزن مخصوص بتن تازه و خشک ، دوام بتن در شرایط محیطی یا سولفاتی ، اسلامپ و کارآئی بتن ، مقدار حباب هوای لازم با توجه به حداکثر اندازه وشرایط محیطی ، و احتمالا" موارد دیگری همچون مدول الاستیسیته یا خواص فیزیکی مکانیکی دیگر مثل قابلیت انتقال حرارت و غیره ، در کنار این موارد ممکنست محدوده دانه بندی مطلوب ( بویژه در روشهای اروپائی ) از جمله محدودیت ها و خواسته ها باشد .
- در کنار این خواسته ها ، داده هائی نیز بر اساس اطلاعات موجود از سیمان ، سنگدانه و ... در دست است و یا باید در آزمایشگاه بدست آید از جمله اینها می توان به موارد زیر اشاره نمود :
نوع سیمان ، حداقل و حداکثر مجاز مصرف سیمان ، حداکثر مجاز نسبت آب به سیمان ، نوع مواد افزودنی مورد نظر و مشخصات آن ، نوع سنگدانه درشت و ریزدانه ، شکل و بافت سطحی سنگدانه ها ، چگالی و جذب آب سبکدانه ها و سنگدانه های معمولی ، رژیم و روند جذب آب سبکدانه ، وزن مخصوص توده ای سنگدانه درشت متراکم با میله ( در طرح امریکائی ) ، دانه بندی سنگدانه ها و حداکثر اندازه آنها ، ویژگیهای مکانیکی و دوام سنگدانه ها ، مدول ریزی سنگدانه ها و ریزدانه ها ( بویژه در روش امریکائی ) ، چگالی ذرات سیمان و افزودنیها : گاه لازمست دانه بندی یا مدول ریزی سبکدانه ها معادل سازی شود یعنی با توجه به اختلاف در چگالی ذرات ، دانه بندی وزنی به دانه بندی و مدول ریزی حجمی تبدیل گردد که در این حالت لازمست برای چگالی ذرات هر بخش اندازه ای را تعیین کنیم .

روش طرح اختلاط و جداول و اطلاعات ضروری در هر روش :
معمولا" در هر نوع روش طرح اختلاط لازمست حدود مقدار آب آزاد با توجه به کارآئی ، حداکثر اندازه سنگدانه و شکل آن فرض گردد و بدست آید . نسبت آب به سیمان از جداول راهنما یا تجربیات گذشته و شخصی فرض می گردد . پس مقدار سیمان در این صورت مشخص می گردد . هر چند گاه در طرح اختلاط بتن سبک ابتدا عیار سیمان فرض شده و با در نظر گرفتن نسبت آب به سیمان یا کارآئی ، مقدار آب مشخص می شود .
اختلاف عمده روش ها در تعیین مقدار سنگدانه ها خواهد بود و بویژه در طرح مخلوط بتن سبکدانه یا نیمه سبکدانه ، اختلافات موجود روشها برای بتن معمولی ، بیشتر می گردد .
در روشهای اروپائی ( آلمانی و اتحادیه بتن اروپا ) با توجه به محدوده مطلوب دانه بندی حجمی، سهم سنگدانه های ریز و درشت ( خواه هر دو سبکدانه یا یکی از آنها سبکدانه باشد ) بدست می آید، سپس چگالی متوسط سنگدانه ها تعیین شده و در فرمول حجم مطلق قرار می گیرد و مقدار کل سنگدانه بدست می آید .
اگر افزودنی داشته باشیم حجم افزودنی از تقسیم وزن به چگالی آن بدست می آید و در رابطه قرار داده می شود .
پس از تعیین با توجه به سهم هر سنگدانه ، وزن آن مشخص می گردد و با توجه به ظرفیت جذب آب هر نوع سنگدانه می توان وزن خشک هر کدام و آب کل را تعیین کرد . وزن مخصوص بتن تازه نیز از جمع اوزان اجزاء بتن بدست می آید ( بصورت محاسباتی ) در عمل پس از ساخت مخلوط آزمون با توجه به نتیجه محاسبات و اطلاعات حاصله مانند اسلامپ ، کارآئی و مقاومت و وزن مخصوص بتن میتوان اصلاحات لازم را در محاسبات به انجام رسانید و طرح اختلاط را نهائی کرد. امریکائی ها نیز در ACI 211.1 و ACI 211.2 و ACI 213 R سه روش را برای طرح اختلاط بتن سشبکدانه و یا نیمه سبکدانه توصیه نموده اند :


آنچه در اینجا اهمیت دارد آنست که در هنگام گیرش نسبت آب به سیمان واقعی چقدر است و با دانستن اینکه آبهای موجود در بتن ، در سنگدانه یا خمیر سیمان است به این نتیجه رسید که آب آزاد واقعی چیست و چقدر می باشد . مسلما" کارآئی و اسلامپ را آب آزاد مربوط به زمانهای کوتاهتر مثل 15 دقیقه یا 30 دقیقه تعیین می کنند . این امر مستلزم آنست که رژیم جذب آب سبکدانه را بدانیم و در هر حالت چگالی سبکدانه را محاسبه کنیم .


در روش حجمی از یک مخلوط آزمون با مقادیر تخمینی استفاده می شود ( آب ، سیمان ، سنگدانه ریز و درشت ) . پس از ساخت مخلوط آزمون و انجام آزمایشهای لازم مانند : اسلامپ ، درصد هوا و وزن مخصوص بتن تازه و مشاهده قابلیت تراکم ، ماله خوری و کارآئی ، خصوصیات دیگر نیز می تواند در زمانهای بعد بدست آید ( مثل مقاومت و ..... ) . اما پس از ساخت بتن و اندازه گیری وزن مخصوص بتن تازه ، با توجه به وزن مصالح مورد استفاده در ساخت بتن ، حجم بتن حاصله تعیین می شود . حجم محاسباتی بتن نیز قبلا" مشخص شده است و لذا و اصلاح در مخلوط برای یکی شدن این ها صورت می گیرد . مسلما" باید اهداف مقاومتی و دوام نیز تأمین گردد . در اینجا نیز مشکل چگالی ذرات و جذب آب وجود دارد که معمولا" رطوبت و چگالی موجود مد نظر قرار می گیرد . لازم به ذکر است که این روش برای بتن های نیمه سبکدانه و تمام سبکدانه کاربرد دارد. همچنین در این روش از حجم سنگدانه ها بصورت شل استفاده می گردد .



این روش صرفا" برای سبکدانه درشت و ریز دانه معمولی کاربرد دارد یعنی صرفا" برای بتن نیمه سبکدانه مورد استفاده قرار می گیرد . در این روش از فاکتور چگالی بجاب چگالی ذرات سبکدانه استفاده می شود . فاکتور چگالی تعریف خاصی است که فقط در ACI 211.2 ( در ضمیمه A ) آمده است و با تعریف چگالی تفاوت دارد . S فاکتور چگالی بصورت زیر می باشد. C وزن سبکدانه ( خشک یا مرطوب ) و B وزن پیکنومتر پر از آب و A وزن پیکنومتر پر از آب و سبکدانه می باشد.
بنابراین در این تعریف وضعیت رطوبتی مشخص نیست و میتواند از حالت خشک تا کاملا" اشباع انجام شود اما باید وضعیت رطوبتی در هر مورد گزارش شود یعنی بگوئیم فاکتور چگالی برای سبکدانه ای با رطوبت معین برابر S می باشد . با توجه به روند معمولی طرح اختلاط امریکائی ، مقدار آب آزاد ، نسبت آب به سیمان ، مقدار سیمان ، وزن سبکدانه درشت خشک و مرطوب بدست می آید که در این رابطه مدول زیری ماسه و حداکثر اندازه سنگدانه ها و کارآئی مورد نیاز کاربرد دارد . جذب آب سبکدانه می تواند طبق دستورهای استاندارد موجود و یا ضمیمه B مربوط به ACI 211.2 مشخص شود که بر این اساس آب کل بدست می آید . در این روش نیز باتوجه به وزن یک متر مکعب بتن مقدار ماسه بدست می آید و بتن مورد نظر با اصلاحات رطوبتی ساخته شده و حک و اصلاح لازم بر روی مقادیر بدست آمده صورت می گیرد تا بتن مطلوب حاصل شود .

کاربردهای بتن سبک
همانطور که می دانیم بتن سبک می تواند به صورت های مختلفی طبقه بندی شود ، مثلا" سازه ای و غیر سازه ای . از این نوع طبقه بندی می توان کاربردها را حدس زد . اما گاه از طبقه بندی دیگری استفاده می نمائیم مثل بتن سبکدانه ، بتن اسفنجی و بتن فاقد ریز دانه . در این نوع طبقه بندی ظاهرا" نمی توان کاربردها را حدس زد .
• ساخت قطعاتی است که صرفا" جنبه پر کننده دارند . در نوع سازه ای نیز دو نوع بتن داریم : مسلح و غیر مسلح . مثلا" اجزاء سازه ای غیر مسلح مثل بلوکهای ساختمانی را باید از این جمله موارد دانست . بتن سبکدانه ای سازه ای مسلح کاربردهائی شبیه بتن معمولی مسلح دارد و حتی ممکن است پیش تنیده هم باشد . جالب است بدانیم بتن های سبکدانه سازه ای مسلح در ابتدا عمدتا" در ساخت کشتی های تجاری و جنگی در جنگ جهانی اول از سال 1918 تا 1922 بکار رفته است . کشتی Atlantus به وزن 3000 تن در سال 1918 و کشتی Selmaبه وزن 7500 تن و طول 132متر در سال 1919 به آب افتادند . همچنین در جنگ جهانی دوم ( تا اواسط جنگ) بدلیل محدودیت هائی در تولید ورق فولادی ( مانند جنگ جهانی اول ) کشتی ها و بارج های زیادی ساخته شدند که در همه آنها از بتن سبکدانه ( و معمولا" سبکدانه رسی منبسط شده ) استفاده شده بود . 24 کشتی اقیانوس پیما و 80 بارج دریائی تا پایان جنگ جهانی دوم در امریکا ساخته شد که ظرفیت آنها از 3 تا 000/ 140 تن بود .
جالب است بدانیم تا این اواخر یک کشتی بنام Peralta که در جنگ جهانی اول ساخته شده بود ، شناور بود و آزمایشهای ارزشمندی نیز بر روی آن انجام شده است که نشان دوام عالی بتن آن از نظر خوردگی میلگردها و کربناسیون می باشد .
مخازن شناور آب و مواد نفتی از جمله موارد استفاده بتن سبکدانه ای مسلح در طول دوران جنگ جهانی اول و دوم بوده است که ظاهرا" بعدها نیز بر خلاف ساخت کشتی ها ، تولید و ساخت آنها ادامه یافته است اما بدلیل اقتصادی در زمان صلح بواسطه وفور ورق فولادی ، تولید کشتی مقرون به صرفه نمی باشد .
در سالهای 1950 و 1960 پل ها و ساختمانهای زیادی با بتن سبکدانه مسلح سازه ای در دنیا ساخته شد . بطور مثال در ایالات متحده و کانادا بیش از 150 پل و ساختمان از این نوع مورد بهره برداری قرار گرفت . بطور مثال ساختمان هتل پارک پلازا در سنت لوئیز امریکا ، ساختمان 14 طبقه اداره تلفن بل جنوب غربی در کانزاس سیتی در سال 1929 از ساختمانهائی هستند که در دهه 20 و 30 میلادی ساخته شده اند .
ساختمان 42 طبقه در شیکاگو ، ترمینال TWA در فرودگاه نیویورک ( 1960 ) ، فرودگاه Dulles واشنگتن در 1962 ، کلیسائی در نروژ در 1965 ، پلی در وایسبادن آلمان در 1966 و پل آب بر در روتردام هلند در 1968 از جمله این موارد هستند . در هلند ، انگلستان ، ایتالیا و اسکاتلند در دهه 70 و 80 میلادی پلهائی از نوع ساخته شده اند .
مخازن عظیم گاز طبیعی ، اسکله شناور ، مخزن نفت در زیر آب و ساختمانهای فرا ساحلی مانند سکوهای استخراج نفت و گاز با بتن سبکدانه مسلح سازه ای ساخته شده اند که اغلب بصورت نیمه سبکدانه و گاه تمام سبکدانه بوده اند . سکوی بزرگ پرش اسکی ، جایگاه تماشاچی در برخی استادیومها و همچنین سقف این استادیومها گاه از بتن سبکدانه ساخته شده است .
بزرگترین بنای بتن سبکدانه ، یک ساختمان اداری 52 طبقه در تکزاس با ارتفاع 215 متر می باشد. در هلند در سالهای 60 تا 73 میلادی 15 پل با دهانه بزرگ با بتن سبکدانه ساخته شده است. در سالهای دهه 70 میلادی ساخت بتن های سبکدانه پر مقاومت آغاز شد و در دهه 80 بدلیل نیاز برخی شرکتهای نفتی در امریکا ، نروژ و مکزیک ، ساخت سازه ها و مخازن ساحلی و فرا ساحلی مانند سکوهای نفتی با بتن سبکدانه پر مقاومت آغاز شد که در اواخر دهه 80 و اوائل دهه 90 به بهره برداری رسید و نتایج آن منتشر شده است .


• بتن اسفنجی معمولا" بع دو نوع گازی و کفی تقسیم میشود . این نوع بتن ها را بتن پوک و متخلخل نیز می نامند و در برخی منابع بتن Cellular نام دارد . اغلب بتن های گازی و کفی غیر سازه ای هستند اما برخی بتن های گازی از قابلیت سازه ای شدن و حتی مسلح شدن برخوردار می باشند .
3. روش وزنی یا فاکتور چگالی ( Weight Method or Specificgravity factor Method ) : بتن های اسفنجی عمدتا" پر کننده هستند . ساخت برخی پانل های جداکننده ، ایجاد کف سازی و شیب بندی ، عایق های حرارتی و جاذب صوت از جمله موارد مورد استفاده بتن اسفنج غیر سازه ای است . تولید قطعات و بلوکهای ساختمانی برای بنائی از جمله کاربردهای بتن گازی است . نوعی بتن گازی بنام سیپورکس در سوئد ساخته شد که می توانست مسلح گردد و در ایران نیز مدتی قطعات بتنی مسلح سیپورکسی بکار رفت از جمله دالهای بتن مسلح پیش ساخته برای پوشش سقف از جنس سیپورکس در برخی پروژه های کشور ما مصرف گشته است . قطعات نما از جنس بتن کفی و گازی یا سبکدانه غیر سازه ای نیز تولید و مصرف شده است . FIP ( fib ) برخی پروژه های مهم ساخته شده با بتن سبکدانه را منتشر نموده است که کاربرد آن را نجومی نشان می دهد . 1. روش حجم مطلق : در این روش عملا" پس از تعیین آب آزاد ، سیمان ، سنگدانه درشت خشک و اشباع ، ازفرمول حجم مطلق استفاده نموده و وزن ماسه اشباع با سطح خشک بدست می آید . این روش برای بتن معمولی ، نیمه سبکدانه و تمام سبکدانه قابل اجراست . مشکل عمده در این حالت تعیین مقدار چگالی اشباع با سطح خشک سبکدانه ها و ظرفیت جذب آب آنهاست . علاوه بر آن عملا" یک اشکال مفهومی نیز در این حالت وجود دارد و آن اینکه آیا اصولا" در هنگام ریختن و گیرش بتن ، سبکدانه ها به مرحله اشباع با سطح خشک رسیده اند که بتوان از چگالی اشباع با سطح خشک آنها برای تعیین حجم اشغال آنها در بتن استفاده نمود . از آنجا که تفاوت حالت واقعی با فرضی گاه خیلی زیاد است . استفاده از این روش بویژه اگر قرار باشد وزن اشباع با سطح خشک و چگال مربوط در فرمول حجم مطلق بکار رود محل تأمل است مگر اینکه از یک چگالی یا وزن دیگر با توجه به جذب آب واقعی در این حالت استفاده نمود که روش بسیار دقیقی حاصل می گردد . امروزه سعی شده است با این روش به طرح اختلاط مناسب دست یافت . مثلا" در روش های اروپائی که این مشکل وجود دارد سعی می شود از جذب آب و چگالی نیم ساعته ، 1 ساعته یا 2 ساعته و حتی 4 ساعته استفاده گردد. 2. روش حجمی ( Volumetric )